当前位置: 首页 > 详情页

Stratification according to recursive partitioning analysis predicts outcome in newly diagnosed glioblastomas

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Neurosurg Inst, Dept Mol Pathol, Beijing, Peoples R China; [2]Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing, Peoples R China; [3]Capital Med Univ, Beijing Tiantan Hosp, Dept Radiat Therapy, Beijing, Peoples R China; [4]China Natl Clin Res Ctr Neurol Dis, Beijing, Peoples R China; [5]Beijing Inst Brain Disorders, Ctr Brain Tumor, Beijing, Peoples R China
出处:
ISSN:

关键词: glioblastoma prognosis recursive partitioning analysis molecular marker MGMT

摘要:
Glioblastoma accounts for more than half of diffuse gliomas. The prognosis of patients with glioblastoma remains poor despite comprehensive and intensive treatments. Furthermore, the clinical significance of molecular parameters and routinely available clinical variables for the prognosis prediction of glioblastomas remains limited. The authors describe a novel model may help in prognosis prediction and clinical management of glioblastoma patients. We performed a recursive partitioning analysis to generate three independent prognostic classes of 103 glioblastomas patients from TCGA dataset. Class I (MGMT promoter methylated, age <58), class II (MGMT promoter methylation, age >= 58; MGMT promoter unmethylation, age <54, KPS >= 70; MGMT promoter unmethylation, age >59, KPS >= 70), class III (MGMT promoter unmethylation, age 54-58, KPS >= 70; MGMT promoter unmethylation, KPS <70). Age, KPS and MGMT promoter methylation were the most significant prognostic factors for overall survival. The results were validated in CGGA dataset. This was the first study to combine various molecular parameters and clinical factors into recursive partitioning analysis to predict the prognosis of patients with glioblastomas. We included MGMT promoter methylation in our study, which could give better suggestion to patients for their chemotherapy. This clinical study will serve as the backbone for the future incorporation of molecular prognostic markers currently in development. Thus, our recursive partitioning analysis model for glioblastomas may aid in clinical prognosis evaluation.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 1 区 医学
小类 | 2 区 细胞生物学 2 区 肿瘤学
最新[2025]版:
JCR分区:
出版当年[2015]版:
Q1 CELL BIOLOGY Q1 ONCOLOGY
最新[2024]版:

影响因子: 最新[2024版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Neurosurg Inst, Dept Mol Pathol, Beijing, Peoples R China;
通讯作者:
通讯机构: [1]Capital Med Univ, Beijing Neurosurg Inst, Dept Mol Pathol, Beijing, Peoples R China; [2]Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing, Peoples R China; [4]China Natl Clin Res Ctr Neurol Dis, Beijing, Peoples R China; [5]Beijing Inst Brain Disorders, Ctr Brain Tumor, Beijing, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:18243 今日访问量:0 总访问量:1002 更新日期:2025-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院