当前位置: 首页 > 详情页

MRF-Net: A multi-branch residual fusion network for fast and accurate whole-brain MRI segmentation

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Harbin Inst Technol, Inst Elect & Informat Engn, Shenzhen, Peoples R China [2]Peng Cheng Lab, Shenzhen, Peoples R China [3]Harbin Inst Technol, Int Res Inst Artificial Intelligence, Shenzhen, Peoples R China [4]MindsGo Co Ltd, Shenzhen, Peoples R China [5]Capital Med Univ, Adv Innovat Ctr Human Brain Protect, Beijing, Peoples R China [6]Capital Med Univ, Xuanwu Hosp, Natl Clin Res Ctr Geriatr Disorders, Beijing, Peoples R China
出处:
ISSN:

关键词: deep learning whole-brain segmentation residual error fusion module multi-branches cross-attention module MRF-Net

摘要:
Whole-brain segmentation from T1-weighted magnetic resonance imaging (MRI) is an essential prerequisite for brain structural analysis, e.g., locating morphometric changes for brain aging analysis. Traditional neuroimaging analysis pipelines are implemented based on registration methods, which involve time-consuming optimization steps. Recent related deep learning methods speed up the segmentation pipeline but are limited to distinguishing fuzzy boundaries, especially encountering the multi-grained whole-brain segmentation task, where there exists high variability in size and shape among various anatomical regions. In this article, we propose a deep learning-based network, termed Multi-branch Residual Fusion Network, for the whole brain segmentation, which is capable of segmenting the whole brain into 136 parcels in seconds, outperforming the existing state-of-the-art networks. To tackle the multi-grained regions, the multi-branch cross-attention module (MCAM) is proposed to relate and aggregate the dependencies among multi-grained contextual information. Moreover, we propose a residual error fusion module (REFM) to improve the network's representations fuzzy boundaries. Evaluations of two datasets demonstrate the reliability and generalization ability of our method for the whole brain segmentation, indicating that our method represents a rapid and efficient segmentation tool for neuroimage analysis.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 3 区 神经科学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 神经科学
JCR分区:
出版当年[2020]版:
Q2 NEUROSCIENCES
最新[2023]版:
Q2 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Harbin Inst Technol, Inst Elect & Informat Engn, Shenzhen, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Harbin Inst Technol, Inst Elect & Informat Engn, Shenzhen, Peoples R China [2]Peng Cheng Lab, Shenzhen, Peoples R China [3]Harbin Inst Technol, Int Res Inst Artificial Intelligence, Shenzhen, Peoples R China [5]Capital Med Univ, Adv Innovat Ctr Human Brain Protect, Beijing, Peoples R China [6]Capital Med Univ, Xuanwu Hosp, Natl Clin Res Ctr Geriatr Disorders, Beijing, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院