机构:[1]Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China,医技科室放射科首都医科大学宣武医院[2]Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China,[3]Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China,[4]Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,[5]Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
BackgroundWhile regional brain structure and function alterations in HIV-infected individuals have been reported, knowledge about the topological organization in gray matter networks is limited. This research aims to investigate the effects of early HIV infection and combination antiretroviral therapy (cART) on gray matter structural covariance networks (SCNs) by employing graph theoretical analysis. MethodsSixty-five adult HIV+ individuals (25-50 years old), including 34 with cART (HIV+/cART+) and 31 medication-naive (HIV+/cART-), and 35 demographically matched healthy controls (HCs) underwent high-resolution T-1-weighted images. A sliding-window method was employed to create "age bins," and SCNs (based on cortical thickness) were constructed for each bin by calculating Pearson's correlation coefficients. The group differences of network indices, including the mean nodal path length (Nlp), betweenness centrality (Bc), number of modules, modularity, global efficiency, local efficiency, and small-worldness, were evaluated by ANOVA and post-hoc tests employing the network-based statistics method. ResultsRelative to HCs, less efficiency in terms of information transfer in the parietal and occipital lobe (decreased Bc) and a compensated increase in the frontal lobe (decreased Nlp) were exhibited in both HIV+/cART+ and HIV+/cART- individuals (P < 0.05, FDR-corrected). Compared with HIV+/cART- and HCs, less specialized function segregation (decreased modularity and small-worldness property) and stronger integration in the network (increased Eglob and little changed path length) were found in HIV+/cART+ group (P < 0.05, FDR-corrected). ConclusionEarly HIV+ individuals exhibited a decrease in the efficiency of information transmission in sensory regions and a compensatory increase in the frontal lobe. HIV+/cART+ showed a less specialized regional segregation function, but a stronger global integration function in the network.
基金:
National Key R&D Program of China [2019YFE0121400]; National Natural Science Foundation of China [82202118, 82271963, 61936013]; Beijing Natural Science Foundation [7212051]; Peking University Medicine Seed Fund for Interdisciplinary Research [BMU2018MX027]; Capital Medical University research and incubation [PYZ21129]; Beijing Excellent Talent Plan [2018000021469G290]
第一作者机构:[1]Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China,[2]Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China,[3]Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China,
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
Li Ruili,Gao Yuxun,Wang Wei,et al.Altered gray matter structural covariance networks in drug-naive and treated early HIV-infected individuals[J].FRONTIERS IN NEUROLOGY.2022,13:doi:10.3389/fneur.2022.869871.
APA:
Li, Ruili,Gao, Yuxun,Wang, Wei,Jiao, Zengxin,Rao, Bo...&Li, Hongjun.(2022).Altered gray matter structural covariance networks in drug-naive and treated early HIV-infected individuals.FRONTIERS IN NEUROLOGY,13,
MLA:
Li, Ruili,et al."Altered gray matter structural covariance networks in drug-naive and treated early HIV-infected individuals".FRONTIERS IN NEUROLOGY 13.(2022)