当前位置: 首页 > 详情页

CSM-Net: Automatic joint segmentation of intima-media complex and lumen in carotid artery ultrasound images

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]School of Biological Science and Medical Engineering, Beihang University, Beijing, China [2]Hefei Innovation Research Institute, Beihang University, Hefei, China [3]Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China [4]Department of Vascular Ultrasonography, XuanWu Hospital, Capital Medical University, Beijing, China [5]Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China [6]Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
出处:
ISSN:

关键词: Carotid artery ultrasound Intima-media complex Spatial attention Hybrid loss function Segmentation

摘要:
The intima-media thickness (IMT) is an effective biomarker for atherosclerosis, which is commonly measured by ultrasound technique. However, the intima-media complex (IMC) segmentation for the IMT is challenging due to confused IMC boundaries and various noises. In this paper, we propose a flexible method CSM-Net for the joint segmentation of IMC and Lumen in carotid ultrasound images. Firstly, the cascaded dilated convolutions combined with the squeeze-excitation module are introduced for exploiting more contextual features on the highestlevel layer of the encoder. Furthermore, a triple spatial attention module is utilized for emphasizing serviceable features on each decoder layer. Besides, a multi-scale weighted hybrid loss function is employed to resolve the class-imbalance issues. The experiments are conducted on a private dataset of 100 images for IMC and Lumen segmentation, as well as on two public datasets of 1600 images for IMC segmentation. For the private dataset, our method obtain the IMC Dice, Lumen Dice, Precision, Recall, and F1 score of 0.814 +/- 0.061, 0.941 +/- 0.024, 0.911 +/- 0.044, 0.916 +/- 0.039, and 0.913 +/- 0.027, respectively. For the public datasets, we obtain the IMC Dice, Precision, Recall, and F1 score of 0.885 +/- 0.067, 0.885 +/- 0.070, 0.894 +/- 0.089, and 0.885 +/- 0.067, respectively. The results demonstrate that the proposed method precedes some cutting-edge methods, and the ablation experiments show the validity of each module. The proposed method may be useful for the IMC segmentation of carotid ultrasound images in the clinic. Our code is publicly available at https://github.com/yuanyc798/US -IMC-code.

基金:

基金编号: Z200024 GXXT-2019-044

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 工程技术
小类 | 2 区 生物学 2 区 数学与计算生物学 3 区 计算机:跨学科应用 3 区 工程:生物医学
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 数学与计算生物学 2 区 生物学 2 区 计算机:跨学科应用 2 区 工程:生物医学
JCR分区:
出版当年[2020]版:
Q1 BIOLOGY Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 BIOLOGY Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]School of Biological Science and Medical Engineering, Beihang University, Beijing, China [2]Hefei Innovation Research Institute, Beihang University, Hefei, China [3]Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
通讯作者:
通讯机构: [1]School of Biological Science and Medical Engineering, Beihang University, Beijing, China [2]Hefei Innovation Research Institute, Beihang University, Hefei, China [3]Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China [4]Department of Vascular Ultrasonography, XuanWu Hospital, Capital Medical University, Beijing, China [5]Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China [6]Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China [*1]School of Biological Science and Medical Engineering, Beihang University, Beijing, China [*2]Department of Vascular Ultrasonography, XuanWu Hospital, Capital Medical University, Beijing, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17069 今日访问量:2 总访问量:918 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院