当前位置: 首页 > 详情页

Antitumor mechanism of kangliu pill on gliomas in mice through PI3K-Akt signaling pathway

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, 100053, China [2]Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China [3]Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
出处:
ISSN:

关键词: Kangliu pill Traditional Chinese medicine Glioma Proteomics Bioinformatics analysis PI3K-Akt signaling pathway

摘要:
Gliomas are common malignant intracranial tumors that have worse prognosis and pose a serious threat to human health. The Kangliu pill (KLP) is an innovative herbal compound from Xuanwu Hospital of Capital Medical University that has been clinically used for the treatment of gliomas for more than 40 years, and is one of the few drugs for primary treatment of this disorder. But the fundamental molecular mechanisms and pathways of KLP are not clear.To investigate the therapeutic mechanism of KLP in the treatment of gliomas.An in situ xenograft model of red fluorescent protein-labeled human glioma cell line (U87-RFP) in BALB/c-nu mouse was established, and the therapeutic effect of KLP on gliomas was assessed by tumor weights and fluorescence areas. A quantitative proteomics approach using tandem mass tags combined with liquid chromatography-tandem mass spectrometry was performed to explore differentially expressed proteins (DEPs) in glioma tissues, and bioinformatics analyses including Gene Ontology analysis, pathway analysis, and network analysis were performed to analyze the proteins involved in the network therapeutic mechanisms responsible for key metabolic pathways. Cytological experiments corroborated the above analysis results.Network pharmacology approach screened 246 bioactive compounds contained in KLP, targeting 724 proteins and 173 potential targets of KLP for glioma treatment. The important targets obtained after visualizing the PPI network were AKT1, INS, GAPDH, SRC, TP53, etc. The KEGG enrichment results showed that 9 proteins were related to cancer, including Pathways in cancer, PI3K/AKT signaling pathway, etc. KLP had antitumor activity in gliomas, which reduced tumor weights and fluorescence areas. A number of DEPs possibly associated with gliomas were identified through quantitative proteomic techniques. Among these DEPs, 50 (25 upregulated and 25 downregulated) were identified that might be associated with KLP action. Bioinformatics showed that these 50 DEPs were mainly focused on focal adhesion, extracellular matrix (ECM)-receptor interactions, and the PI3K-Akt signaling pathway. Cytological experiments revealed that KLP significantly inhibited the proliferation and promoted apoptosis of U87-MG human glioma cells, and its mechanism was through the inhibition of PI3K/AKT signaling pathway.Therapeutic effect of KLP was regulation of multiple pathways in the treatment of gliomas. In specific, it interacts through the PI3K-Akt signaling pathway. This work may contribute proteomic insights for further research on the medical treatment of glioma using KLP.Copyright © 2023 Elsevier B.V. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 1 区 药学 1 区 全科医学与补充医学 1 区 植物科学 2 区 药物化学
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 药物化学 1 区 全科医学与补充医学 1 区 药学 1 区 植物科学
JCR分区:
出版当年[2021]版:
Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE Q1 PLANT SCIENCES Q2 CHEMISTRY, MEDICINAL Q2 PHARMACOLOGY & PHARMACY
最新[2023]版:
Q1 PHARMACOLOGY & PHARMACY Q1 CHEMISTRY, MEDICINAL Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE Q1 PLANT SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, 100053, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院