当前位置: 首页 > 详情页

GD2 CAR-T cells in combination with Nivolumab exhibit enhanced antitumor efficacy

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, Beijing 100053, China [2]Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100069, China [3]Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province 250014, China
出处:
ISSN:

关键词: Glioblastoma GD2 CAR-T PD-1 Tumor microenvironment

摘要:
Glioblastoma (GBM) is a common primary brain tumor with poor clinical prognosis. Although CAR-T therapy has been trialed for treatment of GBM, the outcomes are sub-optimal possibly due to exhaustion of T cells and life-threatening neurotoxicity. To address these issues, a combined therapeutic strategy was tested in the current study using GD2 CAR-T together with Nivolumab - an anti-PD-1 monoclonal antibody. An effector-to-target co-culture system was established to evaluate the short-term and long-term cytotoxicity of CAR-T, as well as to investigate the inhibitory activity and T cell exhaustion associated with the PD-1/PD-L1 signaling pathway. Orthotopic NOD/SCID GBM animal models were generated to evaluate the safety and efficacy of the combined therapeutic strategy at various dosages of GD2 CAR-T with Nivolumab. GD2 CAR-T exhibited significant antigen-specific cytotoxicity in a dose-dependent manner in vitro. The persistence of cytotoxicity of GD2 CAR-T could be enhanced by addition of Nivolumab in the co-culture system. Animal studies suggested that GD2 CAR-T effectively infiltrated into tumor tissue and significantly hampered tumor progression. The optimal therapeutic outcome was obtained via using the medium dosage of CAR-T with Nivolumab, which displayed the highest efficacy in extending the survival up to 60 days. Further investigation of toxicity revealed that high-dosage of GD2 CAR-T could induce tumor apoptosis through p53/caspase-3/PARP signaling pathway. This study suggests that GD2 CAR-T in combination with Nivolumab may offer an improved therapeutic strategy for treatment of GBM.Copyright © 2023. Published by Elsevier Inc.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
最新[2023]版:
大类 | 2 区 医学
小类 | 3 区 肿瘤学
JCR分区:
出版当年[2021]版:
Q2 ONCOLOGY
最新[2023]版:
Q1 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, Beijing 100053, China [2]Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100069, China
通讯作者:
通讯机构: [1]National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, Beijing 100053, China [2]Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100069, China [*1]National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, Beijing 100053, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院