当前位置: 首页 > 详情页

End-to-end automatic pathology localization for Alzheimer's disease diagnosis using structural MRI

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing, 100876, China [2]Department of Neurology, Xuanwu Hospital of Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China [3]Department of Neurosurgery, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
出处:
ISSN:

关键词: Alzheimer’s disease diagnosis Pathology localization End-to-end joint learning Location coordinate prediction Differentiable patch-cropping

摘要:
Structural magnetic resonance imaging (sMRI) is an essential part of the clinical assessment of patients at risk of Alzheimer dementia. One key challenge in sMRI-based computer-aided dementia diagnosis is to localize local pathological regions for discriminative feature learning. Existing solutions predominantly depend on generating saliency maps for pathology localization and handle the localization task independently of the dementia diagnosis task, leading to a complex multi-stage training pipeline that is hard to optimize with weakly-supervised sMRI-level annotations. In this work, we aim to simplify the pathology localization task and construct an end-to-end automatic localization framework (AutoLoc) for Alzheimer's disease diagnosis. To this end, we first present an efficient pathology localization paradigm that directly predicts the coordinate of the most disease-related region in each sMRI slice. Then, we approximate the non-differentiable patch-cropping operation with the bilinear interpolation technique, which eliminates the barrier to gradient backpropagation and thus enables the joint optimization of localization and diagnosis tasks. Extensive experiments on commonly used ADNI and AIBL datasets demonstrate the superiority of our method. Especially, we achieve 93.38% and 81.12% accuracy on Alzheimer's disease classification and mild cognitive impairment conversion prediction tasks, respectively. Several important brain regions, such as rostral hippocampus and globus pallidus, are identified to be highly associated with Alzheimer's disease.Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 工程技术
小类 | 1 区 数学与计算生物学 2 区 工程:生物医学 2 区 生物学 3 区 计算机:跨学科应用
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 数学与计算生物学 2 区 生物学 2 区 计算机:跨学科应用 2 区 工程:生物医学
JCR分区:
出版当年[2021]版:
Q1 BIOLOGY Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:
Q1 BIOLOGY Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing, 100876, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16991 今日访问量:0 总访问量:905 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院