当前位置: 首页 > 详情页

Diagnostic value of preoperative examination for evaluating margin status in breast cancer

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 预警期刊

机构: [1]Capital Med Univ, Xuanwu Hosp, Ctr Thyroid & Breast Surg, Dept Gen Surg, Beijing 100053, Peoples R China [2]Beijing Fengtai Hosp, Dept Gen Surg, Beijing 100071, Peoples R China [3]Capital Med Univ, Xuanwu Hosp, Dept Radiol, Beijing 100053, Peoples R China
出处:
ISSN:

关键词: Breast cancer Breast-conserving surgery Imaging features Positive surgical margin Regression analysis model

摘要:
BACKGROUNDA positive resection margin is a major risk factor for local breast cancer recurrence after breast-conserving surgery (BCS). Preoperative imaging examinations are frequently employed to assess the surgical margin.AIMTo investigate the role and value of preoperative imaging examinations [magnetic resonance imaging (MRI), molybdenum target, and ultrasound] in evaluating margins for BCS.METHODSA retrospective study was conducted on 323 breast cancer patients who met the criteria for BCS and consented to the procedure from January 2014 to July 2021. The study gathered preoperative imaging data (MRI, ultrasound, and molybdenum target examination) and intraoperative and postoperative pathological information. Based on their BCS outcomes, patients were categorized into positive and negative margin groups. Subsequently, the patients were randomly split into a training set (226 patients, approximately 70%) and a validation set (97 patients, approximately 30%). The imaging and pathological information was analyzed and summarized using R software. Non-conditional logistic regression and LASSO regression were conducted in the validation set to identify factors that might influence the failure of BCS. A column chart was generated and applied to the validation set to examine the relationship between pathological margin range and prognosis. This study aims to identify the risk factors associated with failure in BCS.RESULTSThe multivariate non-conditional logistic regression analysis demonstrated that various factors raise the risk of positive margins following BCS. These factors comprise non-mass enhancement (NME) on dynamic contrast-enhanced MRI, multiple focal vascular signs around the lesion on MRI, tumor size exceeding 2 cm, type III time-signal intensity curve, indistinct margins on molybdenum target examination, unclear margins on ultrasound examination, and estrogen receptor (ER) positivity in immunohistochemistry. LASSO regression was additionally employed in this study to identify four predictive factors for the model: ER, molybdenum target tumor type (MT Xmd Shape), maximum intensity projection imaging feature, and lesion type on MRI. The model constructed with these predictive factors exhibited strong consistency with the real-world scenario in both the training set and validation set. Particularly, the outcomes of the column chart model accurately predicted the likelihood of positive margins in BCS.CONCLUSIONThe proposed column chart model effectively predicts the success of BCS for breast cancer. The model utilizes preoperative ultrasound, molybdenum target, MRI, and core needle biopsy pathology evaluation results, all of which align with the real-world scenario. Hence, our model can offer dependable guidance for clinical decision-making concerning BCS.

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 4 区 医学
小类 | 4 区 医学:内科
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 医学:内科
JCR分区:
出版当年[2021]版:
Q4 MEDICINE, GENERAL & INTERNAL
最新[2023]版:
Q3 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Capital Med Univ, Xuanwu Hosp, Ctr Thyroid & Breast Surg, Dept Gen Surg, Beijing 100053, Peoples R China [2]Beijing Fengtai Hosp, Dept Gen Surg, Beijing 100071, Peoples R China
通讯作者:
通讯机构: [1]Capital Med Univ, Xuanwu Hosp, Ctr Thyroid & Breast Surg, Dept Gen Surg, Beijing 100053, Peoples R China [*1]Capital Med Univ, Xuanwu Hosp, Ctr Thyroid & Breast Surg, Dept Gen Surg, 45 Changchun St, Beijing 100053, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院