当前位置: 首页 > 详情页

A comprehensive evaluation of spontaneous pelvic organ prolapse in rhesus macaques as an ideal model for the study of human pelvic organ prolapse

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 统计源期刊 ◇ CSCD-C ◇ 卓越:领军期刊

机构: [1]Medical Science Research Center, the State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China [2]State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China [3]Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, the State Key Laboratory for Complex, Severe, and Rare Diseases, the State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China [4]Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China [5]Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China [6]Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China [7]Department of Gynecology, Guizhou Provincial People’s Hospital, Medical College of Guizhou University, Guiyang 550002, China
出处:
ISSN:

关键词: Pelvic organ prolapse Animal model Rhesus macaque Mechanism scRNA-seq

摘要:
Pelvic organ prolapse (POP) seriously affects a woman's quality of life, and the treatment complications are severe. Although new surgical treatments are being developed, the host tissue responses and safety need to be evaluated in preclinical trials. However, there is a lack of suitable animal models, as most quadrupeds exhibit different structural and pathological changes. In this study, 72 elderly rhesus macaques (Macaca mulatta) were physically examined, and the incidence of spontaneous POP was similar to that in humans. The vaginal wall from five control monkeys and four monkeys with POP were selected for further analysis. Verhoeff-van Gieson staining showed that elastin content decreased significantly in monkeys with POP compared with control samples. Immunohistological staining revealed that the smooth muscle bundles in monkey POP appeared disorganized, and the number of large muscle bundles decreased significantly. The collagen I/III ratio in monkey POP also significantly decreased, as revealed by Sirius Red staining. These histological and biochemical changes in monkeys with POP were similar to those in humans with POP. Moreover, we generated a single-cell transcriptomic atlas of the prolapsed monkey vagina. Cross-species analysis between humans and monkeys revealed a comparable cellular composition. Notably, a differential gene expression analysis determined that dysregulation of the extracellular matrix and an immune disorder were the conserved molecular mechanisms. The interplay between fibroblasts and macrophages contributed to human and monkey POP. Overall, this study represents a comprehensive evaluation of spontaneous POP in rhesus macaques and demonstrates that monkeys are a suitable animal model for POP research.Copyright © 2023 Science China Press. Published by Elsevier B.V. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
最新[2023]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
JCR分区:
出版当年[2021]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Medical Science Research Center, the State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16470 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院