当前位置: 首页 > 详情页

Measuring multivariate phase synchronization with symbolization and permutation

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China [2]Hebei Key Laboratory of information transmission and signal processing, Yanshan University, Qinhuangdao, 066004, China [3]Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China [4]State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
出处:
ISSN:

关键词: Multivariate neural signal Global phase synchronization Symbolization Permutation Seizure classification

摘要:
Phase synchronization is an important mechanism for the information processing of neurons in the brain. Most of the current phase synchronization measures are bivariate and focus on the synchronization between pairs of time series. However, these methods do not provide a full picture of global interactions in neural systems. Considering the prevalence and importance of multivariate neural signal analysis, there is an urgent need to quantify global phase synchronization (GPS) in neural networks. Therefore, we propose a new measure named symbolic phase difference and permutation entropy (SPDPE), which symbolizes the phase difference in multivariate neural signals and estimates GPS according to the permutation patterns of the symbolic sequences. The performance of SPDPE was evaluated using simulated data generated by Kuramoto and Rössler model. The results demonstrate that SPDPE exhibits low sensitivity to data length and outperforms existing methods in accurately characterizing GPS and effectively resisting noise. Moreover, to validate the method with real data, it was applied to classify seizures and non-seizures by calculating the GPS of stereoelectroencephalography (SEEG) data recorded from the onset zones of ten epilepsy patients. We believe that SPDPE will improve the estimation of GPS in many applications, such as EEG-based brain-computer interfaces, brain modeling, and simultaneous EEG-fMRI analysis.Copyright © 2023 Elsevier Ltd. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 计算机科学
小类 | 2 区 计算机:人工智能 2 区 神经科学
最新[2023]版:
大类 | 1 区 计算机科学
小类 | 2 区 计算机:人工智能 2 区 神经科学
JCR分区:
出版当年[2021]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 NEUROSCIENCES
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China [2]Hebei Key Laboratory of information transmission and signal processing, Yanshan University, Qinhuangdao, 066004, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院