当前位置: 首页 > 详情页

Feature Extraction Method of EEG Signals Evaluating Spatial Cognition of Community Elderly With Permutation Conditional Mutual Information Common Space Model

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Univ Sci & Technol Beijing, Sch Intelligence Sci & Technol, Beijing 100083, Peoples R China [2]Yanshan Univ, Sch Informat Sci & Engn, Key Lab Comp Virtual Technol & Syst Integrat Hebei, Qinhuangdao 066004, Hebei, Peoples R China [3]Chengde Med Univ, Hebei Key Lab Nerve Injury & Repair, Chengde 067050, Peoples R China [4]First Hosp Qinhuangdao, Dept Neurol, Qinhuangdao, Peoples R China [5]Capital Med Univ, Xuanwu Hosp, Dept Neurol, Beijing 100053, Peoples R China [6]Hebei Normal Univ Sci & Technol, Sch Math & Informat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
出处:
ISSN:

关键词: Electroencephalography Training Task analysis Cognition Mutual information Older adults Feature extraction Permutation conditional mutual information common space pattern EEG signals community elderly spatial cognitive evaluation virtual reality

摘要:
In order to improve the traditional common space pattern (CSP) algorithm pattern in EEG feature extraction, this study proposes a feature extraction method of EEG signals based on permutation conditional mutual information common space pattern (PCMICSP), which used the sum of the permutation condition mutual information matrices of each lead to replacing the mixed spatial covariance matrix in the traditional CSP algorithm, and its eigenvectors and eigenvalues are used to construct a new spatial filter. Then the spatial features in the different time domains and frequency domains are combined to construct the two-dimensional pixel map, Finally, a convolutional neural network (CNN) is used for binary classification. The EEG signals of 7 community elderly before and after spatial cognitive training in virtual reality (VR) scenes were used as the test data set. The average classification accuracy of the PCMICSP algorithm for pre-test and post-test EEG signals is 98%, which was higher than that of CSP based on CMI (conditional mutual information), CSP based on MI (mutual information), and traditional CSP in the combination of four frequency bands. Compared with the traditional CSP method, PCMICSP can be used as a more effective method to extract the spatial features of EEG signals. Therefore, this paper provides a new approach to solving the strict linear hypothesis of CSP and can be used as a valuable biomarker for the spatial cognitive evaluation of the elderly in the community.

基金:

基金编号: 62276022 62206014 61876165 61503326 2021YFF1200603

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 工程技术
小类 | 2 区 康复医学 2 区 工程:生物医学
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 康复医学 2 区 工程:生物医学
JCR分区:
出版当年[2021]版:
Q1 REHABILITATION Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 REHABILITATION Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Univ Sci & Technol Beijing, Sch Intelligence Sci & Technol, Beijing 100083, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院