当前位置: 首页 > 详情页

Application of machine learning techniques in the diagnostic approach of PTSD using MRI neuroimaging data: A systematic review

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 100053, China. [2]Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, 100053, China.
出处:

关键词: Machine learning Post-traumatic stress disorder Support vector machine Resting-state fMRI sMRI Multivariate pattern analysis

摘要:
At present, the diagnosis of post-traumatic stress disorder(PTSD) mainly relies on clinical symptoms and psychological scales, and finding objective indicators that are helpful for diagnosis has always been a challenge in clinical practice and academic research. Neuroimaging is a useful and powerful tool for discovering the biomarkers of PTSD,especially functional MRI (fMRI), structural MRI (sMRI) and Diffusion Weighted Imaging(DTI)are the most commonly used technologies, which can provide multiple perspectives on brain function, structure and its connectivity. Machine learning (ML) is an emerging and potentially powerful method, which has aroused people's interest because it is used together with neuroimaging data to define brain structural and functional abnormalities related to diseases, and identify phenotypes, such as helping physicians make early diagnosis.According to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) declaration, a systematic review was conducted to assess its accuracy in distinguishing between PTSD patients, TEHC(Trauma-Exposed Healthy Controls), and HC(healthy controls).We searched PubMed, Embase, and Web of Science using common words for ML methods and PTSD until June 2023, with no language or time limits. This review includes 13 studies, with sensitivity, specificity, and accuracy taken from each publication or acquired directly from the authors.All ML techniques have an diagnostic accuracy rate above 70%,and support vector machine(SVM) are the most commonly used techniques. This series of studies has revealed significant neurobiological differences in key brain regions among individuals with PTSD, TEHC, and HC. The connectivity patterns of regions such as the Insula and Amygdala hold particular significance in distinguishing these groups. TEHC exhibits more normal connectivity patterns compared to PTSD, providing valuable insights for the application of machine learning in PTSD diagnosis.In contrast to any currently available assessment and clinical diagnosis, ML techniques can be used as an effective and non-invasive support for early identification and detection of patients as well as for early screening of high-risk populations.© 2024 The Authors. Published by Elsevier Ltd.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
最新[2023]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2022]版:
Q2 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 100053, China. [2]Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, 100053, China.
通讯作者:
通讯机构: [1]Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 100053, China. [2]Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, 100053, China. [*1]Department of Radiology and Nuclear medicine, Xuanwu Hospital, Capital Medical University, Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Xicheng District, Beijing, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院