当前位置: 首页 > 详情页

EPAT: a user-friendly MATLAB toolbox for EEG/ERP data processing and analysis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China. [2]China International Neuroscience Institute, Beijing, China. [3]School of Psychology and Mental Health, North China University of Science and Technology, Tangshan, China.
出处:
ISSN:

关键词: data processing electrophysiology electroencephalography event-related potential open source user-friendly MATLAB toolbox

摘要:
At the intersection of neural monitoring and decoding, event-related potential (ERP) based on electroencephalography (EEG) has opened a window into intrinsic brain function. The stability of ERP makes it frequently employed in the field of neuroscience. However, project-specific custom code, tracking of user-defined parameters, and the large diversity of commercial tools have limited clinical application.We introduce an open-source, user-friendly, and reproducible MATLAB toolbox named EPAT that includes a variety of algorithms for EEG data preprocessing. It provides EEGLAB-based template pipelines for advanced multi-processing of EEG, magnetoencephalography, and polysomnogram data. Participants evaluated EEGLAB and EPAT across 14 indicators, with satisfaction ratings analyzed using the Wilcoxon signed-rank test or paired t-test based on distribution normality.EPAT eases EEG signal browsing and preprocessing, EEG power spectrum analysis, independent component analysis, time-frequency analysis, ERP waveform drawing, and topological analysis of scalp voltage. A user-friendly graphical user interface allows clinicians and researchers with no programming background to use EPAT.This article describes the architecture, functionalities, and workflow of the toolbox. The release of EPAT will help advance EEG methodology and its application to clinical translational studies.Copyright © 2024 Shi, Gong, Song, Xie, Yang, Sun, Wei, Wang and Zhao.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 4 区 医学
小类 | 3 区 数学与计算生物学 4 区 神经科学
最新[2023]版:
大类 | 4 区 医学
小类 | 3 区 数学与计算生物学 4 区 神经科学
JCR分区:
出版当年[2022]版:
Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q2 NEUROSCIENCES
最新[2023]版:
Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q3 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China. [2]China International Neuroscience Institute, Beijing, China.
共同第一作者:
通讯作者:
通讯机构: [1]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China. [2]China International Neuroscience Institute, Beijing, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院