当前位置: 首页 > 详情页

Information segregation and integration of aMCI based on genuine symbolic nonlinear Granger causality brain network

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Hebei Med Univ, Sch Med Imaging, Shijiazhuang, Peoples R China [2]Measurement Technol & Instrumentat Key Lab Hebei P, Qinhuangdao, Hebei, Peoples R China [3]Yanshan Univ, Sch Elect Engn, Qinhuangdao, Peoples R China [4]First Hosp Qinhuangdao, Qinhuangdao, Peoples R China [5]Capital Med Univ, Xuanwu Hosp, Dept Neurol, Beijing, Peoples R China
出处:
ISSN:

关键词: Amnestic mild cognitive impairment Electroencephalogram Genuine symbolic nonlinear granger causality Genetic algorithm -based support vector machine

摘要:
Objectives: There is an increasing interest in the neurophysiologic mechanisms of amnestic mild cognitive impairment (aMCI). However, the changes in information segregation and integration are unclear. Methods: Genuine Symbolic Nonlinear Granger Causality (GSNGC), a new coupling method, was utilized to analyze the functional connectivity differences (nodal and global levels) between aMCI and Normal Control (NC) by clustering coefficient and efficiency metrics. Finally, aMCI was diagnosed by a genetic algorithm-based support vector machine (GA-SVM) based on the GSNGC network metrics. Results: The average network connection strength in aMCI was lower than in the NC group, except for theta frequency. The significant difference of global eigenvalues (global efficiency and average clustering coefficient) in the alpha frequency band between aMCI and NC is the highest (p < 0.001). There is a significant difference in nodal eigenvalues for the temporal lobe between aMCI and NC (p < 0.05). Finally, the classification accuracy of the GA-SVM based on GSNGC network features was 93.4 %. Conclusions: The GSNGC network was an effective indicator for identifying aMCI. Loss of cognition was associated with the redistribution of the pattern of information integration. Meanwhile, network compensation mechanisms may exist in the brains of aMCI individuals.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
最新[2023]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2022]版:
Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Hebei Med Univ, Sch Med Imaging, Shijiazhuang, Peoples R China
通讯作者:
通讯机构: [2]Measurement Technol & Instrumentat Key Lab Hebei P, Qinhuangdao, Hebei, Peoples R China [3]Yanshan Univ, Sch Elect Engn, Qinhuangdao, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院