当前位置: 首页 > 详情页

Automated Identification of the Retinogeniculate Visual Pathway Using a High-Dimensional Tractography Atlas

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Zhejiang Univ Technol, Inst Informat Proc & Automat, Coll Informat Engn, Hangzhou 310023, Peoples R China [2]Sun Yat Sen Univ, Affiliated Hosp 1, Ctr Pituitary Tumor Surg, Dept Neurosurg, Guangzhou 510080, Guangdong, Peoples R China [3]Cent South Univ, Xiangya Hosp, Dept Neurosurg, Changsha 410017, Hunan, Peoples R China [4]Capital Med Univ, Xuanwu Hosp, Dept Neurosurg, Beijing 100053, Peoples R China
出处:
ISSN:

关键词: Visualization Tumors Optical fibers Optical imaging Optical filters Skull Biomedical optical imaging Automated identification diffusion magnetic resonance imaging (dMRI) fiber clustering retinogeniculate visual pathway (RGVP) tractography

摘要:
The retinogeniculate visual pathway (RGVP) plays an important role in the visual system. Diffusion MRI-based tractography has been successfully used to identify RGVP. However, challenges of RGVP tractography remain because of its highly curved path and intricate anatomical environment. One of the key challenges is the large false-positive fibers generated from RGVP tractography that requires the labor costs to hand-draw ROIs for fiber filtering. Therefore, we presented a pipeline to enable automated RGVP identification in diffusion magnetic resonance imaging tractography. First, we generated a tractography-based RGVP atlas. Herein, the multifiber unscented Kalman filter tractography was performed using high-resolution data from 50 subjects. Then, we transformed the 50 tractography cases into a common space and implemented data-driven fiber clustering to group the neighboring fibers with similar trajectories into one cluster. Two experienced anatomists were responsible for RGVP annotation in the tractography atlas. Second, the high-dimensional RGVP atlas was applied to identify subject-specific RGVP in testing data sets and two patients with different scanning parameters. Experimental results showed that our automatic identification results have ideal colocalization with expert manual identification in terms of Hausdorff distance, fiber distance, and visualization. Therefore, the proposed method provides an efficient tool for analyzing large-scale data sets in vision-related neuroscience research.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 计算机科学
小类 | 3 区 计算机:人工智能 3 区 神经科学 3 区 机器人学
最新[2023]版:
大类 | 3 区 计算机科学
小类 | 3 区 计算机:人工智能 3 区 神经科学 3 区 机器人学
JCR分区:
出版当年[2022]版:
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q2 NEUROSCIENCES Q2 ROBOTICS
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 NEUROSCIENCES Q1 ROBOTICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Zhejiang Univ Technol, Inst Informat Proc & Automat, Coll Informat Engn, Hangzhou 310023, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院