当前位置: 首页 > 详情页

Supervised Segmentation of Un-Annotated Retinal Fundus Images by Synthesis

文献详情

资源类型:

收录情况: ◇ SCIE ◇ EI

机构: [1]Beijing Institute of Technology, Beijing 100081, China, and also with the Bioinformatics Institute, A*STAR, Singapore 138671. [2]Beijing Institute of Technology, Beijing 100081, China [3]Bioinformatics Institute, A*STAR, Singapore 138671. [4]School of Computer Science, Carleton University, Ottawa, ON K1S 5B6, Canada. [5]Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China [6]Bioinformatics Institute, A*STAR, Singapore 138671, [7]Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
出处:
ISSN:

关键词: Biomedical optical imaging image segmentation phantoms

摘要:
We focus on the practical challenge of segmenting new retinal fundus images that are dissimilar to existing well-annotated data sets. It is addressed in this paper by a supervised learning pipeline, with its core being the construction of a synthetic fundus image data set using the proposed R-sGAN technique. The resulting synthetic images are realistic-looking in terms of the query images while maintaining the annotated vessel structures from the existing data set. This helps to bridge the mismatch between the query images and the existing well-annotated data set. As a consequence, any known supervised fundus segmentation technique can be directly utilized on the query images, after training on this synthetic data set. Extensive experiments on different fundus image data sets demonstrate the competitiveness of the proposed approach in dealing with a diverse range of mismatch settings.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 2 区 医学
小类 | 1 区 计算机:跨学科应用 2 区 工程:生物医学 2 区 工程:电子与电气 2 区 成像科学与照相技术 2 区 核医学
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 核医学
JCR分区:
出版当年[2017]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]Beijing Institute of Technology, Beijing 100081, China, and also with the Bioinformatics Institute, A*STAR, Singapore 138671.
通讯作者:
通讯机构: [2]Beijing Institute of Technology, Beijing 100081, China [6]Bioinformatics Institute, A*STAR, Singapore 138671, [7]Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院