当前位置: 首页 > 详情页

The EEG signals steganography based on wavelet packet transform-singular value decomposition-logistic

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Univ Sci & Technol Beijing, Sch Intelligence Sci & Technol, 30 Xueyuan Rd, Beijing 100083, Peoples R China [2]Univ Sci & Technol Beijing, Key Lab Percept & Control Intelligent Bion Unmanne, Minist Educ, 30,Xueyuan Rd, Beijing 100083, Peoples R China [3]Yanshan Univ, Sch Informat Sci & Engn, 438 Hebei Ave, Qinhuangdao 066004, Hebei, Peoples R China [4]Hebei Normal Univ Sci & Technol, Sch Math & Informat Sci & Technol, 360 Hebei St, Qinhuangdao 066004, Hebei, Peoples R China [5]Chengde Med Univ, Dept Biomed Engn, Anyuan Rd, Chengde 067000, Hebei, Peoples R China [6]Capital Med Univ, Xuanwu Hosp, Dept Neurol, Beijing 100053, Peoples R China
出处:
ISSN:

关键词: EEG signals Steganography Wavelet packet transform-singular value decomposition-logistic

摘要:
Brain-computer interface (BCI) technology is widely used in online medicine for the diagnosis and treatment of brain diseases. However, during brain-computer interaction, Electroencephalogram (EEG) signals and private information may be leaked when transmitted through unsecured Internet channels. To protect private information and EEG signal security, this paper proposes a steganography algorithm based on Wavelet Packet Transform-Singular Value DecompositionLogistic (WPT-SVD-Logistic). The algorithm utilized wavelet packet transform (WPT) to conceal more private information while maintaining better perceptual fidelity. After two-level WPT processing, the EEG signal is decomposed into 4 sub-band signals, and then the singular value decomposition (SVD) method is used to embed private information into these sub-band signals. Additionally, the algorithm employed the Logistic map to confuse private information further and enhance its security. Experimental results show that WPT is more suitable for information hiding in EEG signals. The average peak signal-to-noise ratio of the algorithm on four different datasets is 96.5 dB, indicating that adding private information has a weak impact on the EEG signal. Compared with similar methods, this algorithm has smaller errors and stronger robustness, so it has more potential to become the main means of EEG signal steganography.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 计算机科学
小类 | 1 区 计算机:信息系统
最新[2023]版:
大类 | 1 区 计算机科学
小类 | 1 区 计算机:信息系统
JCR分区:
出版当年[2022]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
最新[2023]版:

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版]

第一作者:
第一作者机构: [1]Univ Sci & Technol Beijing, Sch Intelligence Sci & Technol, 30 Xueyuan Rd, Beijing 100083, Peoples R China [2]Univ Sci & Technol Beijing, Key Lab Percept & Control Intelligent Bion Unmanne, Minist Educ, 30,Xueyuan Rd, Beijing 100083, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院