当前位置: 首页 > 详情页

Aberrant brain structural-functional connectivity coupling associated with cognitive dysfunction in different cerebral small vessel disease burdens

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China [2]Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China [3]Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China [4]School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China [5]Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing, China
出处:
ISSN:

关键词: cerebral small vessel disease burden cognitive dysfunction functional efficiency structural-functional connectivity coupling

摘要:
AimsEmerging evidence suggests that cerebral small vessel disease (CSVD) pathology changes brain structural connectivity (SC) and functional connectivity (FC) networks. Although network-level SC and FC are closely coupled in the healthy population, how SC-FC coupling correlates with neurocognitive outcomes in patients with different CSVD burdens remains largely unknown.MethodsUsing multimodal MRI, we reconstructed whole-brain SC and FC networks for 54 patients with severe CSVD burden (CSVD-s), 106 patients with mild CSVD burden (CSVD-m), and 79 healthy controls. We then investigated the aberrant SC-FC coupling and functional network topology in CSVD and their correlations with cognitive dysfunction.ResultsCompared with controls, the CSVD-m patients showed no significant change in any SC-FC coupling, but the CSVD-s patients exhibited significantly decreased whole-brain (p = 0.014), auditory/motor (p = 0.033), and limbic modular (p = 0.011) SC-FC coupling. For functional network topology, despite no change in global efficiency, CSVD-s patients exhibited significantly reduced nodal efficiency of the bilateral amygdala (p = 0.024 and 0.035) and heschl gyrus (p = 0.001 and 0.005). Notably, for the CSVD-s patients, whole-brain SC-FC coupling showed a significantly positive correlation with MoCA (r = 0.327, p = 0.020) and SDMT (r = 0.373, p = 0.008) scores, limbic/subcortical modular SC-FC coupling showed a negative correlation (r = -0.316, p = 0.025) with SCWT score, and global/local efficiency (r = 0.367, p = 0.009 and r = 0.353, p = 0.012) showed a positive correlation with AVLT score. For the CSVD-m group, whole-brain and auditory/motor modular SC-FC couplings showed significantly positive correlations with SCWT (r = 0.217, p = 0.028 and r = 0.219, p = 0.027) and TMT (r = 0.324, p = 0.001 and r = 0.245, p = 0.013) scores, and global/local efficiency showed positive correlations with AVLT (r = 0.230, p = 0.020 and r = 0.248, p = 0.012) and SDMT (r = 0.263, p = 0.008 and r = 0.263, p = 0.007) scores.ConclusionOur findings demonstrated that decreased whole-brain and module-dependent SC-FC coupling associated with reduced functional efficiency might underlie more severe burden and worse cognitive decline in CSVD. SC-FC coupling might serve as a more sensitive neuroimaging biomarker of CSVD burden and provided new insights into the pathophysiologic mechanisms of clinical development of CSVD. We reconstructed whole-brain structural connectivity (SC) and functional connectivity (FC) networks for severe cerebral small vessel disease (CSVD) burden patients (CSVD-s), CSVD mild burden patients (CSVD-m), and healthy controls. The CSVD-s group showed considerably decreased SC-FC coupling in the limbic/subcortical module compared with the CSVD-m group, while there was no difference in SC-FC coupling between the CSVD-m and control groups.image

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 医学
小类 | 2 区 神经科学 2 区 药学
最新[2023]版:
大类 | 1 区 医学
小类 | 2 区 神经科学 2 区 药学
JCR分区:
出版当年[2022]版:
Q1 NEUROSCIENCES Q1 PHARMACOLOGY & PHARMACY
最新[2023]版:
Q1 PHARMACOLOGY & PHARMACY Q1 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
共同第一作者:
通讯作者:
通讯机构: [5]Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing, China [*1]Southwest Univ, Fac Psychol, Key Lab Cognit & Personal, Minist Educ, Chongqing 400715, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院