当前位置: 首页 > 详情页

A Novel Method to Identify Mild Cognitive Impairment Using Dynamic Spatio-Temporal Graph Neural Network

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Tianjin Univ, Acad Med Engn & Translat Med, Tianjin 300072, Peoples R China [2]Hainan Univ, Sch Biomed Engn, Haikou 570228, Peoples R China [3]Capital Med Univ, Xuanwu Hosp, Dept Neurol, Beijing 100053, Peoples R China [4]Beijing Inst Brain Disorders, Ctr Alzheimers Dis, Beijing 100069, Peoples R China [5]Natl Clin Res Ctr Geriatr Dis, Beijing 100053, Peoples R China [6]Shenzhen Bay Lab, Inst Biomed Engn, Shenzhen 518118, Peoples R China
出处:
ISSN:

关键词: Graph neural networks Convolution Brain modeling Alzheimer's disease Feature extraction Functional magnetic resonance imaging Deep learning mild cognitive impairment graph neural network dynamic functional connectivity

摘要:
Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely used in the identification of mild cognitive impairment (MCI) research, MCI patients are relatively at a higher risk of progression to Alzheimer's disease (AD). However, almost machine learning and deep learning methods are rarely analyzed from the perspective of spatial structure and temporal dimension. In order to make full use of rs-fMRI data, this study constructed a dynamic spatiotemporal graph neural network model, which mainly includes three modules: temporal block, spatial block, and graph pooling block. Our proposed model can extract the BOLD signal of the subject's fMRI data and the spatial structure of functional connections between different brain regions, and improve the decision-making results of the model. In the study of AD, MCI and NC, the classification accuracy reached 83.78% outperforming previously reported, which manifested that our model could effectively learn spatiotemporal, and dynamic spatio-temporal method plays an important role in identifying different groups of subjects. In summary, this paper proposed an end-to-end dynamic spatio-temporal graph neural network model, which uses the information of the temporal dimension and spatial structure in rs-fMRI data, and achieves the improvement of the three classification performance among AD, MCI and NC.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 1 区 康复医学 2 区 工程:生物医学
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 康复医学 2 区 工程:生物医学
JCR分区:
出版当年[2022]版:
Q1 REHABILITATION Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 REHABILITATION Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Tianjin Univ, Acad Med Engn & Translat Med, Tianjin 300072, Peoples R China
通讯作者:
通讯机构: [2]Hainan Univ, Sch Biomed Engn, Haikou 570228, Peoples R China [3]Capital Med Univ, Xuanwu Hosp, Dept Neurol, Beijing 100053, Peoples R China [4]Beijing Inst Brain Disorders, Ctr Alzheimers Dis, Beijing 100069, Peoples R China [5]Natl Clin Res Ctr Geriatr Dis, Beijing 100053, Peoples R China [6]Shenzhen Bay Lab, Inst Biomed Engn, Shenzhen 518118, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17069 今日访问量:0 总访问量:916 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院