当前位置: 首页 > 详情页

Pathological Asymmetry-Guided Progressive Learning for Acute Ischemic Stroke Infarct Segmentation

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Southeast Univ, Lab Image Sci & Technol, Nanjing 210096, Peoples R China [2]Capital Med Univ, Xuanwu Hosp, Dept Radiol & Nucl Med, Beijing 100054, Peoples R China [3]Beijing Key Lab Magnet Resonance Imaging & Brain I, Beijing 100053, Peoples R China [4]City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China [5]IMT Atlantique, Inserm, UMR 1101, LaTIM, F-29000 Brest, France [6]Univ Rennes 1, Lab Traitement Signal & Image, F-35000 Rennes, France [7]Natl Inst Hlth & Med Res, F-35000 Rennes, France [8]Southeast Univ, Minist Educ, Sch Comp Sci & Engn, Lab Image Sci & Technol, Nanjing 210096, Peoples R China [9]Southeast Univ, Minist Educ, Key Lab New Generat Artificial Intelligence Techno, Nanjing 210096, Peoples R China
出处:
ISSN:

关键词: Artificial intelligence Pathology Image segmentation Lesions Task analysis Biomedical imaging Brain modeling Acute ischemic stroke infarct segmentation non-contrast CT brain bilateral comparison progressive learning

摘要:
Quantitative infarct estimation is crucial for diagnosis, treatment and prognosis in acute ischemic stroke (AIS) patients. As the early changes of ischemic tissue are subtle and easily confounded by normal brain tissue, it remains a very challenging task. However, existing methods often ignore or confuse the contribution of different types of anatomical asymmetry caused by intrinsic and pathological changes to segmentation. Further, inefficient domain knowledge utilization leads to mis-segmentation for AIS infarcts. Inspired by this idea, we propose a pathological asymmetry-guided progressive learning (PAPL) method for AIS infarct segmentation. PAPL mimics the step-by-step learning patterns observed in humans, including three progressive stages: knowledge preparation stage, formal learning stage, and examination improvement stage. First, knowledge preparation stage accumulates the preparatory domain knowledge of the infarct segmentation task, helping to learn domain-specific knowledge representations to enhance the discriminative ability for pathological asymmetries by constructed contrastive learning task. Then, formal learning stage efficiently performs end-to-end training guided by learned knowledge representations, in which the designed feature compensation module (FCM) can leverage the anatomy similarity between adjacent slices from the volumetric medical image to help aggregate rich anatomical context information. Finally, examination improvement stage encourages improving the infarct prediction from the previous stage, where the proposed perception refinement strategy (RPRS) further exploits the bilateral difference comparison to correct the mis-segmentation infarct regions by adaptively regional shrink and expansion. Extensive experiments on public and in-house NCCT datasets demonstrated the superiority of the proposed PAPL, which is promising to help better stroke evaluation and treatment.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 医学
小类 | 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 核医学
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 核医学
JCR分区:
出版当年[2022]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Southeast Univ, Lab Image Sci & Technol, Nanjing 210096, Peoples R China
通讯作者:
通讯机构: [2]Capital Med Univ, Xuanwu Hosp, Dept Radiol & Nucl Med, Beijing 100054, Peoples R China [3]Beijing Key Lab Magnet Resonance Imaging & Brain I, Beijing 100053, Peoples R China [8]Southeast Univ, Minist Educ, Sch Comp Sci & Engn, Lab Image Sci & Technol, Nanjing 210096, Peoples R China [9]Southeast Univ, Minist Educ, Key Lab New Generat Artificial Intelligence Techno, Nanjing 210096, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院