当前位置: 首页 > 详情页

A Structure-Preserving Denoising Diffusion Model for AV45 PET Quantification Without MRI in Alzheimer's Disease Diagnosis

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Harbin Inst Technol Shenzhen, Sch Elect & Informat Engn, Shenzhen, Peoples R China [2]Harbin Inst Technol Shenzhen, Sch Biomed Engn, Shenzhen, Peoples R China [3]Peng Cheng Lab, Shenzhen, Guangdong, Peoples R China [4]Harbin Inst Technol Shenzhen, Guangdong Prov Key Lab Aerosp Commun & Networking, Shenzhen, Peoples R China [5]Capital Med Univ, Xuanwu Hosp, Dept Neurol, Beijing, Peoples R China [6]Hainan Univ, Sch Biomed Engn, Haikou, Hainan, Peoples R China [7]Beijing Inst Brain Disorders, Ctr Alzheimers Dis, Beijing, Peoples R China [8]Natl Clin Res Ctr Geriatr Disorders, Beijing, Peoples R China [9]Shenzhen Bay Lab, Inst Biomed Engn, Shenzhen, Guangdong, Peoples R China [10]Cent Hosp Karamay, Xinjiang, Peoples R China
出处:
ISSN:

关键词: Alzheimer's disease AV45 PET quantification diffusion model MRI

摘要:
Lack of early diagnosis often results in patients with Alzheimer progressing to irreversible mild to moderate cognitive impairment without timely treatment. The deposition of amyloid-beta (A beta) in the cerebral cortex, a definitive biomarker for Alzheimer's disease, is detectable through AV45 PET scans, facilitating early diagnosis of the condition. Clinically, accurate quantification of AV45 PET scans necessitate T1 images. However, the prevalent use of PET-CT over PET-MRI equipment entails additional MRI scans, leading to increased costs and patient burden. To address this clinical challenge, this paper proposes the structure-preserving denoising diffusion probabilistic model (SP-DDPM), capable of synthesizing the T1 images from AV45 PET scans. In the SP-DDPM, structural details from T1 images are incorporated into the diffusion model to emphasize anatomical accuracy. We also enhance the model's learning for the targeted brain areas using segmentation-based priors. Moreover, an exponential cosine noise strategy is proposed to improve the model's suitability for generating T1 images. In this study, we incorporated a large-scale cohort of 667 subjects from the ADNI and SILCODE databases to train and validate our models. The MR images generated from AV45 PET demonstrated similar signal patterns to real MR images. The average absolute error of the cortical composite region SUVR, estimated using our method, was 0.018 for the ADNI dataset and 0.041 for the SILCODE dataset, outperforming current techniques. The MR images generated by the SP-DDPM serve as an accurate template for amyloid quantification, facilitating precise AV45 PET scan quantification in the absence of real MR images. The application of this method is poised to streamline the diagnostic workflow for Alzheimer's disease, increase clinical work efficiency, and alleviate patient burden.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 工程:电子与电气 4 区 成像科学与照相技术 4 区 光学
最新[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 工程:电子与电气 4 区 成像科学与照相技术 4 区 光学
JCR分区:
出版当年[2023]版:
Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q2 OPTICS
最新[2023]版:
Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q2 OPTICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Harbin Inst Technol Shenzhen, Sch Elect & Informat Engn, Shenzhen, Peoples R China [2]Harbin Inst Technol Shenzhen, Sch Biomed Engn, Shenzhen, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [2]Harbin Inst Technol Shenzhen, Sch Biomed Engn, Shenzhen, Peoples R China [3]Peng Cheng Lab, Shenzhen, Guangdong, Peoples R China [4]Harbin Inst Technol Shenzhen, Guangdong Prov Key Lab Aerosp Commun & Networking, Shenzhen, Peoples R China [5]Capital Med Univ, Xuanwu Hosp, Dept Neurol, Beijing, Peoples R China [6]Hainan Univ, Sch Biomed Engn, Haikou, Hainan, Peoples R China [7]Beijing Inst Brain Disorders, Ctr Alzheimers Dis, Beijing, Peoples R China [8]Natl Clin Res Ctr Geriatr Disorders, Beijing, Peoples R China [9]Shenzhen Bay Lab, Inst Biomed Engn, Shenzhen, Guangdong, Peoples R China [10]Cent Hosp Karamay, Xinjiang, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17441 今日访问量:0 总访问量:934 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院