当前位置: 首页 > 详情页

miR-543 functions as a tumor suppressor in glioma in vitro and in vivo

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 [2]Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu 215123, P.R. China
出处:
ISSN:

关键词: miR-543 glioma tumor suppressor proteomic profiling

摘要:
Gliomas are the most common primary central nervous system tumors and account for approximately 80% of malignant brain tumors. MicroRNAs (miRNAs) are a class of small non-coding, regulatory RNA molecules that mediate the expression levels of specific proteins. As a member of the miRNA family, miR-543 plays a tumor suppressive or an oncogenic role in different types of tumors. However, the expression and role of miR-543 in glioma remain unknown. In the present study, the expression level of miR-543 in glioma cell lines and tissues was investigated. A series of in vitro and in vivo experiments was then performed to elucidate the function of miR-543 in glioma. Moreover, proteomic profiling was applied in this study to determine the landscape of differentially expressed proteins associated with miR-543-mediated carcinogenesis in glioma. We found that the expression level of miR-543 was greatly downregulated in glioma cell lines and tissues. Furthermore, the expression level of miR-543 was negatively associated with high-grade glioma. Functional studies demonstrated that miR-543 in glioma cells induced apoptosis and inhibited growth, the cell cycle, migration and invasion. In addition, the in vivo study showed that miR-543 suppressed tumorigenicity of glioma cells. In the present study, a label free quantitative proteomic approach was performed and 339 proteins were identified as dysregulated after miR-543 was overexpressed. Among these dysregulated proteins, 165 were upregulated and 174 were downregulated. Moreover, multiple pathways were significantly enriched and were probably involved in miR-543-mediated tumorigenesis, including RNA degradation and the inositol phosphate metabolism pathway. In conclusion, miR-543 may function as a tumor suppressor in glioma and may serve as a future therapeutic target in therapy for patients with glioma.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2015]版:
Q3 ONCOLOGY
最新[2023]版:
Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者机构: [1]Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004
通讯作者:
通讯机构: [*]Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Sanxiang Road 1055, Suzhou, Jiangsu 215004, P.R. China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17319 今日访问量:0 总访问量:932 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院