当前位置: 首页 > 详情页

Inhibition of connexin43 improves functional recovery after ischemic brain injury in neonatal rats

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou City, China [2]The Institute of Neuroscience, Soochow University, Suzhou City, China [3]Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee [4]Department of Neurology, Subei People’s Hospital, Yangzhou City, China [5]Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
出处:
ISSN:

关键词: connexin43 ischemic brain injury caspase-3 glutamate astrocyte

摘要:
Connexin43 (Cx43) is one of the most abundant gap junction proteins in the central nervous system. Abnormal opening of Cx43 hemichannels after ischemic insults causes apoptotic cell death. In this study, we found persistently increased expression of Cx43 8 h to 7 d after hypoxia/ischemia (HI) injury in neonatal rats. Pre-treatment with Gap26 and Gap27, two Cx43 mimetic peptides, significantly reduced cerebral infarct volume. Gap26 treatment at 24 h after ischemia improved functional recovery on muscle strength, motor coordination, and spatial memory abilities. Further, Gap26 inhibited Cx43 expression and reduced active astrogliosis. Gap26 interacted and co-localized with Cx43 together in brain tissues and cultured astrocytes. After oxygen glucose deprivation, Gap26 treatment reduced the total Cx43 level in cultured astrocytes; but Cx43 level in the plasma membrane was increased. Degradation of Cx43 in the cytoplasm was mainly via the ubiquitin proteasome pathway. Concurrently, phosphorylated Akt, which phosphorylates Cx43 on Serine(373) and facilitates the forward transport of Cx43 to the plasma membrane, was increased by Gap26 treatment. Microdialysis showed that increased membranous Cx43 causes glutamate release by opening Cx43 hemichannels. Extracellular glutamate concentration was significantly decreased by Gap26 treatment in vivo. Finally, we found that cleaved caspase-3, an apoptosis marker, was attenuated after HI injury by Gap26 treatment. Effects of Gap27 were analogous to those of Gap26. In summary, our findings demonstrate that modulation of Cx43 expression and astroglial function is a potential therapeutic strategy for ischemic brain injury. GLIA 2015;63:1553-1567

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2014]版:
大类 | 2 区 医学
小类 | 2 区 神经科学
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 神经科学
JCR分区:
出版当年[2013]版:
Q1 NEUROSCIENCES
最新[2023]版:
Q1 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2013版] 出版当年五年平均 出版前一年[2012版] 出版后一年[2014版]

第一作者:
第一作者机构: [1]Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou City, China [2]The Institute of Neuroscience, Soochow University, Suzhou City, China
共同第一作者:
通讯作者:
通讯机构: [1]Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou City, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院