当前位置: 首页 > 详情页

Low-rank matrix recovery for source imaging with magnetoencephalography

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [a]School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China [b]Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China [c]Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, China [d]Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China [e]Beijing Key Laboratory of Brain Functional Disease and Neuromodulation, Beijing 100053, China
出处:
ISSN:

关键词: Beamforming Epileptogenic zone Low-rank matrix recovery Magnetoencephalography Source imaging

摘要:
Source imaging with magnetoencephalography (MEG) provides good spatial accuracy for shallow sources and has been successfully applied for the study of brain cognition and the diagnosis of brain diseases. Yet, its utility for locating deep sources is unclear and remains a technical challenge. In this study, we proposed a new source imaging method for the assessment of brain activity in deep locations. A MEG sensor array with 306 channels was represented as a low-rank matrix plus sparse noise. The low-rank matrix was then used to estimate the source model with minimum variance beamforming. Simulations of a realistic head model indicated that the proposed method was effective. Our method was further verified in 10 patients with temporal lobe epilepsy, wherein the imaging results were consistent with clinical findings. (C) 2018 Published by Elsevier Ltd.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 3 区 物理
小类 | 3 区 光学 3 区 物理:应用
最新[2023]版:
大类 | 2 区 物理与天体物理
小类 | 2 区 光学 2 区 物理:应用
JCR分区:
出版当年[2017]版:
Q2 PHYSICS, APPLIED Q2 OPTICS
最新[2023]版:
Q1 OPTICS Q2 PHYSICS, APPLIED

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [a]School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China [b]Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China [c]Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, China
通讯作者:
通讯机构: [a]School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China [b]Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China [c]Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院