Design and preparation of polyurethane-collagen/heparin-conjugated polycaprolactone double-layer bionic small-diameter vascular graft and its preliminary animal tests
机构:[1]Department of Pediatric Cardiac Surgery, Beijing Children Hospital, Capital Medical University, Beijing 100045, China[2]Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China血管外科首都医科大学宣武医院[3]School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Background People recently realized that it is important for artificial vascular biodegradable graft to bionically mimic the functions of the native vessel. In order to overcome the high risk of thrombosis and keep the patency in the clinical small-diameter vascular graft (SDVG) transplantation, a double-layer bionic scaffold, which can offer anticoagulation and mechanical strength simultaneously, was designed and fabricated via electrospinning technique. Methods Heparin-conjugated polycaprolactone (hPCL) and polyurethane (PU)-collagen type I composite was used as the inner and outer layers, respectively. The porosity and the burst pressure of SDVG were evaluated. Its biocompatibility was demonstrated by the 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H tetrazolium bromide (MTT) test in vitro and subcutaneous implants in vivo respectively. The grafts of diameter 2.5 mm and length 4.0 cm were implanted to replace the femoral artery in Beagle dog model. Then, angiography was performed in the Beagle dogs to investigate the patency and aneurysm of grafts at 2, 4, and 8 weeks post-transplantation. After angiography, the patent grafts were explanted for histological analysis. Results The double-layer bionic SDVG meet the clinical mechanical demand. Its good biocompatibility was proven by cytotoxicity experiment (the cell's relative growth rates (RGR) of PU-collagen outer layer were 102.8%, 109.2% and 103.5%, while the RGR of hPCL inner layer were 99.0%, 100.0% and 98.0%, on days 1, 3, and 5, respectively) and the subdermal implants experiment in the Beagle dog. Arteriography showed that all the implanted SDVGs were patent without any aneurismal dilatation or obvious anastomotic stenosis at the 2nd, 4th, and 8th week after the operation, except one SDVG that failed at the 2nd week. Histological analysis and SEM showed that the inner layer was covered by new endothelial-like cells. Conclusion The double-layer bionic SDVG is a promising candidate as a replacement of native small-diameter vascular graft.
基金:
the “863” Project of the Ministry of Science and Technology of China (No. 2007AA021905)
第一作者机构:[1]Department of Pediatric Cardiac Surgery, Beijing Children Hospital, Capital Medical University, Beijing 100045, China[2]Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
通讯作者:
通讯机构:[*1]Department of Pediatric Cardiac Surgery, Beijing Children Hospital, Capital Medical University, Beijing 100045, China
推荐引用方式(GB/T 7714):
LU Guang,CUI Shi-jun,GENG Xue,et al.Design and preparation of polyurethane-collagen/heparin-conjugated polycaprolactone double-layer bionic small-diameter vascular graft and its preliminary animal tests[J].CHINESE MEDICAL JOURNAL.2013,126(7):1310-1316.doi:10.3760/cma.j.issn.0366-6999.20130029.
APA:
LU Guang,CUI Shi-jun,GENG Xue,YE Lin,CHEN Bing...&LI Zhong-zhi.(2013).Design and preparation of polyurethane-collagen/heparin-conjugated polycaprolactone double-layer bionic small-diameter vascular graft and its preliminary animal tests.CHINESE MEDICAL JOURNAL,126,(7)
MLA:
LU Guang,et al."Design and preparation of polyurethane-collagen/heparin-conjugated polycaprolactone double-layer bionic small-diameter vascular graft and its preliminary animal tests".CHINESE MEDICAL JOURNAL 126..7(2013):1310-1316