当前位置: 首页 > 详情页

Noise-based tube current reduction method with iterative reconstruction for reduction of radiation exposure in coronary CT angiography

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [a]Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St., Xicheng District, Beijing 100053, China [b]Department of Biomedical Engineering, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St., Xicheng District, Beijing 100053, China
出处:
ISSN:

关键词: Iterative reconstruction Coronary CT angiography Radiation dose

摘要:
Purpose: To investigate the potential of noise-based tube current reduction method with iterative reconstruction to reduce radiation exposure while achieving consistent image quality in coronary CT angiography (CCTA). Materials and methods: 294 patients underwent CCTA on a 64-detector row CT equipped with iterative reconstruction. 102 patients with fixed tube current were assigned to Group 1, which was used to establish noise-based tube current modulation formulas, where tube current was modulated by the noise of test bolus image. 192 patients with noise-based tube current were randomly assigned to Group 2 and Group 3. Filtered back projection was applied for Group 2 and iterative reconstruction for Group 3. Qualitative image quality was assessed with a 5 point score. Image noise, signal intensity, volume CT dose index, and dose-length product were measured. Results: The noise-based tube current modulation formulas were established through regression analysis using image noise measurements in Group 1. Image noise was precisely maintained at the target value of 35.00 HU with small interquartile ranges for Group 2 (34.17-35.08 HU) and Group 3 (34.34-35.03 HU), while it was from 28.41 to 36.49 HU for Group 1. All images in the three groups were acceptable for diagnosis. A relative 14% and 41% reduction in effective dose for Group 2 and Group 3 were observed compared with Group 1. Conclusion: Adequate image quality could be maintained at a desired and consistent noise level with overall 14% dose reduction using noise-based tube current reduction method. The use of iterative reconstruction further achieved approximately 40% reduction in effective dose. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2012]版:
大类 | 3 区 医学
小类 | 3 区 核医学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 核医学
JCR分区:
出版当年[2011]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2011版] 出版当年五年平均 出版前一年[2010版] 出版后一年[2012版]

第一作者:
第一作者机构: [a]Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St., Xicheng District, Beijing 100053, China
通讯作者:
通讯机构: [a]Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St., Xicheng District, Beijing 100053, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院