当前位置: 首页 > 详情页

The in vitro and in vivo biocompatibility evaluation of heparin-poly(epsilon-caprolactone) conjugate for vascular tissue engineering scaffolds

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China [2]Xuanwu Hospital, Capital Medical University, Beijing 100053, China [3]The Affiliated People’s Hospital of Shanxi Medical University, Taiyuan 030012, China [4]Shanxi Provicial People’s Hospital, Taiyuan 030012, China
出处:
ISSN:

关键词: PCL-heparin conjugate scaffold protein adsorption femoral artery replacement artery angiography histological analysis

摘要:
Poly(e-caprolactone) (PCL) was conjugated with heparin and fabricated into nonwoven tubular scaffold by electrospinning. The dynamic contact angle analysis revealed the hydrophilicity improvement due to heparin concentrating on the conjugate surface. The microbicinchoninic acid and quartz crystal microbalance measurements implied that the conjugate can significantly reduce the absorption of plasma protein, such as albumin and fibrinogen, indicative of the good blood biocompatibility. As evidenced by Enzyme Linked Immunosorbent Assay, the electrospun conjugate scaffolds possessed a higher loading capability of vascular endothelial growth factor (VEGF) than that of the blank PCL in aqueous solution via static interaction. The viability of loaded VEGF was evaluated by cell culture and adhesion tests. The amount and morphology of cells were substantially improved after VEGF was loaded into scaffolds exhibiting excellent cell biocompatibility. To assess the in vivo biocompatibility, a tubular scaffold (L = 4 cm, D = 2 mm) was transplanted into dog's femoral artery. The scaffold patency was inspected by carotid artery angiography 4 weeks after implantation. The explanted scaffold was also investigated by histological analysis including hematoxyline eosin, Millere Masson (collagen and elastin), and von Kossa (calcium) stain. Furthermore, von Willebrand factor immunohistochemical stain was performed to examine the formation of endothelial layer. The conjugate shows the potential to be used as scaffold materials in vascular tissue engineering. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A:32513258, 2012.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2011]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:生物医学 3 区 材料科学:生物材料
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 工程:生物医学 3 区 材料科学:生物材料
JCR分区:
出版当年[2010]版:
Q1 ENGINEERING, BIOMEDICAL Q2 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q2 ENGINEERING, BIOMEDICAL Q3 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2010版] 出版当年五年平均 出版前一年[2009版] 出版后一年[2011版]

第一作者:
第一作者机构: [1]School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
通讯作者:
通讯机构: [1]School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院