当前位置: 首页 > 详情页

Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [a]Department of Epidemiology and Health Statistics, School of Public Health and Family Medicine, Capital Medical University. Beijing 100069, China [b]Department of Biochemistry and Molecular Biology, Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China [c]Department of Radiology, Xuan Wu Hospital, Capital Medical University, Beijing 100050, China [d]Department of Radiology, Friendship Hospital, Capital Medical University, Beijing 100053, China
出处:
ISSN:

关键词: Texture extraction CT image Small pulmonary nodules Hierarchical data Multilevel model

摘要:
Purpose: To introduce multilevel binomial logistic prediction model-based computer-aided diagnostic (CAD) method of small solitary pulmonary nodules (SPNs) diagnosis by combining patient and image characteristics by textural features of CT image. Materials and methods: Describe fourteen gray level co-occurrence matrix textural features obtained from 2171 benign and malignant small solitary pulmonary nodules, which belongs to 185 patients. Multilevel binomial logistic model is applied to gain these initial insights. Results: Five texture features, including Inertia, Entropy, Correlation, Difference-mean, Sum-Entropy, and age of patients own aggregating character on patient-level, which are statistically different (P < 0.05) between benign and malignant small solitary pulmonary nodules. Conclusion: Some gray level co-occurrence matrix textural features are efficiently descriptive features of CT image of small solitary pulmonary nodules, which can profit diagnosis of earlier period lung cancer if combined patient-level characteristics to some extent. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2009]版:
大类 | 4 区 医学
小类 | 3 区 核医学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 核医学
JCR分区:
出版当年[2008]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2008版] 出版当年五年平均 出版前一年[2007版] 出版后一年[2009版]

第一作者:
第一作者机构: [a]Department of Epidemiology and Health Statistics, School of Public Health and Family Medicine, Capital Medical University. Beijing 100069, China
通讯作者:
通讯机构: [a]Department of Epidemiology and Health Statistics, School of Public Health and Family Medicine, Capital Medical University. Beijing 100069, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院