当前位置: 首页 > 详情页

PLK4 is a determinant of temozolomide sensitivity through phosphorylation of IKBKE in glioblastoma.

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [a]Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China [b]Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 453002, China [c]Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China [d]Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
出处:
ISSN:

关键词: Glioma Chemosensitivity Kinase PLK4

摘要:
Despite the clinical success of temozolomide (TMZ), its sensitivity remains a major challenge in glioblastoma (GBM). Here, we show that PLK4 affects TMZ sensitivity by regulating the IKBKE/NF-κB axis. The mRNA level of PLK4 was significantly associated with glioma grade progression and inversely correlated with overall survival (OS) in patients with high-grade gliomas (HGG). Further analyses indicated that GBM patients with low PLK4 expression levels gained greater survival benefits from chemotherapy than did those with high PLK4 expression. In GBM cells, TMZ sensitivity was decreased by ectopic expression of PLK4 and enhanced by depletion of PLK4. In the GBM mice model, inhibiting PLK4 in combination with chemotherapy slowed tumor growth and provided a significant survival benefit. Furthermore, PLK4 interacted with and phosphorylated IKBKE, leading to an increase in NF-κB transcriptional activity and anti-apoptosis. Notably, the PLK4 inhibitor CFI400945, which is currently in clinical trials, had a synergistic effect with TMZ, increasing TMZ sensitivity in xenografts from patient-derived primary GBMs. Our work describes the PLK4-IKBKE signaling axis that influences GBM proliferation and chemosensitivity, and can enhance the anti-tumor effects of chemotherapy via therapeutic targeting. Copyright © 2018 Elsevier B.V. All rights reserved.

基金:
语种:
高被引:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
最新[2023]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
JCR分区:
出版当年[2017]版:
Q1 ONCOLOGY
最新[2023]版:
Q1 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [a]Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
共同第一作者:
通讯作者:
通讯机构: [a]Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China [b]Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 453002, China [*1]Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping district, Tianjin, 300052, China [*2]Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road East, Zhengzhou, Henan, 453002, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院