当前位置: 首页 > 详情页

A mix-pooling CNN architecture with FCRF for brain tumor segmentation

文献详情

资源类型:

收录情况: ◇ SCIE ◇ EI

机构: [a]School of Computer Science and Technology, University of Science and Technology of China, Hefei 230000, PR China [b]School of Medicine Information, Wannan Medical College, Wuhu, Anhui 241002, PR China [c]Research Center of Health Big Data Mining and Applications, Wannan Medical College, Wuhu, Anhui 241002, PR China [d]College of Computer Sciences, Zhejiang University, Hangzhou 310000, PR China [e]School of Medical Information, Wannan Medical College, Wuhu 241000, PR China [f]Medical Engineering Department, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, PR China
出处:
ISSN:

关键词: MR image segmentation Convolutional Neural Network Fully CRF

摘要:
MR technique is prevalent for doctor to diagnose and assess glioblastomas which are the most lethal form of brain tumors. Although Convolutional Neural Networks (CNN) has been applied in automatic brain tumor segmentation and is proved useful and efficient, traditional one-pathway CNN architecture with convolutional layers and max pooling layers has limited receptive fields representing the local context information. Such mindset in traditional CNN may dismiss useful global context information. In this paper, we design a two-pathway model with average and max pooling layers in different paths. Besides, 1 x 1 kernels are followed input layers to add the non-linearity dimensions of input data. Finally, we combine the CNN architecture with fully connected CRF(FCRF) as a mixture model to introduce the global context information to optimize prediction results. Our experiments proved that the mixture model improved segmentation and labeling accuracy. (C) 2018 Elsevier Inc, All rights reserved.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 3 区 工程技术
小类 | 3 区 计算机:信息系统 3 区 计算机:软件工程
最新[2023]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 计算机:软件工程
JCR分区:
出版当年[2017]版:
Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
最新[2023]版:
Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [a]School of Computer Science and Technology, University of Science and Technology of China, Hefei 230000, PR China [b]School of Medicine Information, Wannan Medical College, Wuhu, Anhui 241002, PR China [c]Research Center of Health Big Data Mining and Applications, Wannan Medical College, Wuhu, Anhui 241002, PR China
通讯作者:
通讯机构: [a]School of Computer Science and Technology, University of Science and Technology of China, Hefei 230000, PR China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院