The purpose of this study was to investigate the anti-fibrotic effect and possible mechanism of bone marrow mesenchymal stem cells (BMSCs) in silica-included lung injury and fibrosis in vivo and in vitro. In vivo, rats were exposed to 50 mg/m1 silica intratracheally. The rats were sacrificed on day 15 or day 30 after intravenous injection of BMSCs. Histopathological examination demonstrated that BMSCs decreased the blue areas of collagen fibers and the number of nodules. Alveolar epithelium was damaged by silica, but it was restored by BMSCs. In vitro, BMSCs co-cultured with RLE-6TN cells in 6Transwell plates were evaluated to determine the possible mechanism. The results demonstrated that BMSCs downregulated the expression of collagen I and III. BMSCs reversed morphological abnormalities and reduced the proliferation of RLE-6TN cells. These data showed that BMSCs did not give rise to alveolar epithelial cells directly, while the levels of hepatocyte growth factor, keratinocyte growth factor and bone morphogenetic protein 7 increased and expression of tumor necrosis factor -alpha and transforming growth factor -beta 1 decreased in the 6TN + Silica + BMSCs group compared with the 6TN + Silica group. Our results revealed that BMSCs exerted anti-fibrotic effects on silica-induced pulmonary fibrosis, which might be associated with paracrine mechanisms rather than differentiation. (C) 2017 Elsevier B.V. All rights reserved.
基金:
National Natural Science Foundation of ChinaNational Natural Science Foundation of China [81472958]