当前位置: 首页 > 详情页

Identification of a Novel Deletion Mutation (c.1780delG) and a Novel Splice-Site Mutation (c.1412-1G > A) in the CCM1/KRIT1 Gene Associated with Familial Cerebral Cavernous Malformation in the Chinese Population

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing, Peoples R China; [2]China Natl Clin Res Ctr Neurol Dis NCRC ND, Beijing, Peoples R China; [3]Peking Univ, Sch Basic Med Sci, Dept Pathol, Hlth Sci Ctr, Beijing, Peoples R China
出处:
ISSN:

关键词: Familial cerebral cavernous malformation DNA sequencing Novel mutation Deletion mutation Splice-site mutation CCM1

摘要:
Cerebral cavernous malformation (CCM) is a congenital vascular anomaly predominantly located within the central nervous system. Its familial forms (familial cerebral cavernous malformation (FCCM)), inherited in an autosomal dominant manner with incomplete penetrance, are attributed to mutations in CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10 genes. To date, little is known about the genetic alterations leading to FCCM in the Chinese population. We aimed to investigate the genetic defect of FCCM by DNA sequencing in Chinese families. This study enrolled five Chinese families with FCCM. All index cases underwent surgical treatment and were diagnosed with CCM by pathology; their relatives were diagnosed based on radiological and/or pathological evidence. Genomic DNA was extracted from peripheral blood and amplified using polymerase chain reaction (PCR) for DNA sequencing. The five families comprised a total of 21 affected individuals: 12 of these were symptomatic, and 9 were asymptomatic. Sequence analyses in the index patients disclosed three heterozygous loss-of-function mutations in the CCM1/KRIT1 gene in three families, respectively: a novel deletion mutation (c.1780delG; p.Ala594HisfsX67) in exon 16, a novel splice-site mutation (c.1412-1G > A) in the splice acceptor site in intron 13, and a previously described 4-bp deletion (c.1197_1200delCAAA; p.Gln401ThrfsX10) in exon 12. All of these mutations are predicted to cause a premature termination codon to generate a truncated Krev interaction trapped 1 (Krit1) protein. These mutations segregated in affected relatives. Our findings provided new CCM1 gene mutation profiles, which help to elucidate the pathogenesis of FCCM and will be of great significance in genetic counseling.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 3 区 医学
小类 | 4 区 生化与分子生物学 4 区 神经科学
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 生化与分子生物学 4 区 神经科学
JCR分区:
出版当年[2015]版:
Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Q3 NEUROSCIENCES
最新[2023]版:
Q2 NEUROSCIENCES Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing, Peoples R China; [2]China Natl Clin Res Ctr Neurol Dis NCRC ND, Beijing, Peoples R China;
通讯作者:
通讯机构: [1]Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing, Peoples R China; [2]China Natl Clin Res Ctr Neurol Dis NCRC ND, Beijing, Peoples R China;
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院