当前位置: 首页 > 详情页

BrainSort: a Machine Learning Toolkit for Brain Connectome Data Analysis and Visualization

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan [2]School of Life Science, Beijing Institute of Technology, Beijing, China [3]Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China [4]Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
出处:
ISSN:

关键词: Graphical user interfaces Biomedical image processing Classification algorithms Support vector machines Data visualization

摘要:
In recent years, applying machine learning methods to neurological and psychiatric disorder diagnoses has grasped the interest of many researchers; however, currently available machine learning toolboxes usually require somewhat intermediate programming knowledge. In order to use machine learning methods more quickly and conveniently, we developed an intuitive toolbox named BrainSort. BrainSort used Python as the main programming languages and employed a hospitable Graphical User Interface (GUI). The toolbox is user-friendly for researchers and clinical doctors with little to no prior programming skills. It enables the client to choose from multiple machine learning methods, such as support vector machine (SVM),k-nearest neighbors (k-NN), and convolutional neural network (CNN) for data processing and training. Using BrainSort, doctors and researchers can calculate and visualize the correlation between brain connectome topology parameters and the symptom in question without prolonged programming training, empowering them to use the powerful tool of machine learning in their studies and practices.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 工程:电子与电气
最新[2023]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 工程:电子与电气
JCR分区:
出版当年[2020]版:
Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
最新[2023]版:
Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Q3 ENGINEERING, ELECTRICAL & ELECTRONIC

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
共同第一作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院