当前位置: 首页 > 详情页

Computer-Aided Intracranial EEG Signal Identification Method Based on a Multi-Branch Deep Learning Fusion Model and Clinical Validation

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing 100876, China [2]Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China [3]Robotics Institute, School of Mechanical Engineering & Automation, BeiHang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China [4]Wuxi BUPT Sensory Technology and Industry Institute Co. Ltd., Wuxi 214001, China
出处:
ISSN:

关键词: intracranial EEG (iEEG) SEEG epileptogenic signals identification multi-branch deep learning fusion

摘要:
Surgical intervention or the control of drug-refractory epilepsy requires accurate analysis of invasive inspection intracranial EEG (iEEG) data. A multi-branch deep learning fusion model is proposed to identify epileptogenic signals from the epileptogenic area of the brain. The classical approach extracts multi-domain signal wave features to construct a time-series feature sequence and then abstracts it through the bi-directional long short-term memory attention machine (Bi-LSTM-AM) classifier. The deep learning approach uses raw time-series signals to build a one-dimensional convolutional neural network (1D-CNN) to achieve end-to-end deep feature extraction and signal detection. These two branches are integrated to obtain deep fusion features and results. Resampling is employed to split the imbalanced epileptogenic and non-epileptogenic samples into balanced subsets for clinical validation. The model is validated over two publicly available benchmark iEEG databases to verify its effectiveness on a private, large-scale, clinical stereo EEG database. The model achieves high sensitivity (97.78%), accuracy (97.60%), and specificity (97.42%) on the Bern-Barcelona database, surpassing the performance of existing state-of-the-art techniques. It is then demonstrated on a clinical dataset with an average intra-subject accuracy of 92.53% and cross-subject accuracy of 88.03%. The results suggest that the proposed method is a valuable and extremely robust approach to help researchers and clinicians develop an automated method to identify the source of iEEG signals.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 医学
小类 | 3 区 神经科学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 神经科学
JCR分区:
出版当年[2019]版:
Q2 NEUROSCIENCES
最新[2023]版:
Q3 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing 100876, China
共同第一作者:
通讯作者:
通讯机构: [1]Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing 100876, China [4]Wuxi BUPT Sensory Technology and Industry Institute Co. Ltd., Wuxi 214001, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院