当前位置: 首页 > 详情页

Hemodynamic Effects of Size and Location of Basilar Artery Fenestrations Associated to Pathological Implications.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]School of Life Science, Beijing Institute of Technology, Beijing, China [2]Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, Beijing, China [3]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
出处:
ISSN:

关键词: Fenestration Basilar artery Presumptive model Computational fluid dynamics

摘要:
Fenestration is a rare congenital abnormality that refers to a segmental duplication of arteries. It is still not clear about the role of fenestrations in the etiology and pathological evolution of vascular diseases. This study aims to investigate the hemodynamic influence brought by various sizes and locations of fenestration in basilar artery models. A series presumptive fenestration models were established based on a normal basilar artery model with various sizes and locations. Identical boundary conditions were utilized in the computational fluid dynamics simulations and different flow patterns in the fenestration and bifurcation regions were comprehensively analyzed. Wall-shear-stress (WSS)-related parameters such as oscillatory shear index (OSI) and aneurysm formation index (AFI) were computed and compared. The value of WSS on fenestration increased by the fenestration's tortuosity, and nearly-circular fenestration suffered higher WSS than narrow-strips one. Also, High OSI and low AFI value mainly occurred in the bifurcation region, indicating a high level of turbulence and high risk of aneurysm formation. The location of fenestration mainly changed the impact force of blood flow on the bifurcation and the disorder characteristics of blood flow, while the size of fenestration changed the WSS distribution on the proximal inner wall and bifurcation region of fenestration. In summary, the nearly-circular fenestration should be stratified carefully which may results in a high risk inducing unfavorable vascular wall remodeling.This article is protected by copyright. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 医学
小类 | 3 区 数学与计算生物学 3 区 数学跨学科应用 4 区 工程:生物医学
最新[2023]版:
大类 | 4 区 医学
小类 | 2 区 数学与计算生物学 3 区 数学跨学科应用 4 区 工程:生物医学
JCR分区:
出版当年[2019]版:
Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q3 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Q3 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]School of Life Science, Beijing Institute of Technology, Beijing, China
共同第一作者:
通讯作者:
通讯机构: [1]School of Life Science, Beijing Institute of Technology, Beijing, China [*1]School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院