Magnetic Resonance Imaging Measurement of Entorhinal Cortex in the Diagnosis and Differential Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease.
机构:[1]Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.医技科室放射科首都医科大学宣武医院[2]Being Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China.[3]Department of Psychology, Tsinghua University, Haidian District, Beijing 100084, China.[4]Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.神经科系统神经内科首都医科大学宣武医院[5]School of Psychology, Capital Normal University, Beijing 100048, China.
Several magnetic resonance imaging studies have shown that the entorhinal cortex (ERC) is the first brain area related to pathologic changes in Alzheimer's disease (AD), even before atrophy of the hippocampus (HP). However, change in ERC morphology (thickness, surface area and volume) in the progression from aMCI to AD, especially in the subtypes of aMCI (single-domain and multiple-domain: aMCI-s and aMCI-m), however, is still unclear. ERC thickness, surface area and volume were measured in 29 people with aMCI-s, 22 people with aMCI-m, 18 patients with AD and 26 age-/sex-matched healthy controls. Group comparisons of the ERC geometry measurements (including thickness, volume and surface area) were performed using analyses of covariance (ANCOVA). Furthermore, receiver operator characteristic (ROC) analyses and the area under the curve (AUC) were employed to investigate classification ability (HC, aMCI-s, aMCI-m and AD from each other). There was a significant decreasing tendency in ERC thickness from HC to aMCI-s to aMCI-m to finally AD in both the left and the right hemispheres (left hemisphere: HC > aMCI-s > AD; right hemisphere: aMCI-s > aMCI-m > AD). For ERC volume, both the AD group and the aMCI-m group showed significantly decreased volume on both sides compared with the HC group. In addition, the AD group also had significantly decreased volume on both sides compared with the aMCI-s group. As for the ERC surface area, no significant difference was identified among the four groups. Furthermore, the AUC results demonstrate that combined ERC parameters (thickness and volume) can better discriminate the four groups from each other than ERC thickness alone. Finally, and most importantly, relative to HP volume, the capacity of combined ERC parameters was better at discriminating between HC and aMCI-s, as well as aMCI-m and AD. ERC atrophy, particularly the combination of ERC thickness and volume, might be regarded as a promising candidate biomarker in the diagnosis and differential diagnosis of aMCI and AD.
基金:
the National Key Research and Development Project of
China (2020YFC2007302), the Natural Science Foundation of China (grant numbers 81873892) and
the Beijing Municipal Science and Technology Project of Brain Cognition and Brain Medicine (No.
Z171100000117001).
第一作者机构:[1]Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.[2]Being Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China.
共同第一作者:
通讯作者:
通讯机构:[1]Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.[2]Being Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China.
推荐引用方式(GB/T 7714):
Li Qianqian,Wang Junkai,Liu Jianghong,et al.Magnetic Resonance Imaging Measurement of Entorhinal Cortex in the Diagnosis and Differential Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease.[J].BRAIN SCIENCES.2021,11(9):doi:10.3390/brainsci11091129.
APA:
Li Qianqian,Wang Junkai,Liu Jianghong,Wang Yumeng&Li Kuncheng.(2021).Magnetic Resonance Imaging Measurement of Entorhinal Cortex in the Diagnosis and Differential Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease..BRAIN SCIENCES,11,(9)
MLA:
Li Qianqian,et al."Magnetic Resonance Imaging Measurement of Entorhinal Cortex in the Diagnosis and Differential Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease.".BRAIN SCIENCES 11..9(2021)