当前位置: 首页 > 详情页

Individualized multi-modal MRI biomarkers predict 1-year clinical outcome in first-episode drug-naïve schizophrenia patients

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ SSCI

机构: [1]Sichuan Univ, West China Hosp, Dept Radiol, Chengdu, Peoples R China [2]Chinese Acad Med Sci, Res Unit Psychoradiol, Chengdu, Peoples R China [3]Capital Med Univ, Xuanwu Hosp, Dept Radiol & Nucl Med, Beijing, Peoples R China [4]Sichuan Univ, West China Hosp, Dept Radiol, Funct & Mol Imaging Key Lab Sichuan Prov, Chengdu, Peoples R China [5]Sichuan Univ, West China Hosp, Funct & Mol Imaging Key Lab Sichuan Prov, Chengdu, Peoples R China [6]Sichuan Univ, Dept Radiol, West China Xiamen Hosp, Xiamen, Fujian, Peoples R China
出处:
ISSN:

关键词: antipsychotic medication individualized imaging biomarker machine learning schizophrenia treatment-resistant

摘要:
Background Antipsychotic medications offer limited long-term benefit to about 30% of patients with schizophrenia. We aimed to explore the individual-specific imaging markers to predict 1-year treatment response of schizophrenia.Methods Structural morphology and functional topological features related to treatment response were identified using an individualized parcellation analysis in conjunction with machine learning (ML). We performed dimensionality reductions using the Pearson correlation coefficient and three feature selection analyses and classifications using 10 ML classifiers. The results were assessed through a 5-fold cross-validation (training and validation cohorts, n = 51) and validated using the external test cohort (n = 17).Results ML algorithms based on individual-specific brain network proved more effective than those based on group-level brain network in predicting outcomes. The most predictive features based on individual-specific parcellation involved the GMV of the default network and the degree of the control, limbic, and default networks. The AUCs for the training, validation, and test cohorts were 0.947, 0.939, and 0.883, respectively. Additionally, the prediction performance of the models constructed by the different feature selection methods and classifiers showed no significant differences.Conclusion Our study highlighted the potential of individual-specific network parcellation in treatment resistant schizophrenia prediction and underscored the crucial role of feature attributes in predictive model accuracy.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 3 区 精神病学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 精神病学
JCR分区:
出版当年[2022]版:
Q2 PSYCHIATRY
最新[2024]版:
Q2 PSYCHIATRY

影响因子: 最新[2024版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Sichuan Univ, West China Hosp, Dept Radiol, Chengdu, Peoples R China [2]Chinese Acad Med Sci, Res Unit Psychoradiol, Chengdu, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Sichuan Univ, West China Hosp, Dept Radiol, Chengdu, Peoples R China [2]Chinese Acad Med Sci, Res Unit Psychoradiol, Chengdu, Peoples R China [4]Sichuan Univ, West China Hosp, Dept Radiol, Funct & Mol Imaging Key Lab Sichuan Prov, Chengdu, Peoples R China [5]Sichuan Univ, West China Hosp, Funct & Mol Imaging Key Lab Sichuan Prov, Chengdu, Peoples R China [6]Sichuan Univ, Dept Radiol, West China Xiamen Hosp, Xiamen, Fujian, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:18311 今日访问量:1 总访问量:1010 更新日期:2025-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院