当前位置: 首页 > 详情页

Advances in Multimodal Imaging Techniques for Evaluating and Predicting the Efficacy of Immunotherapy for NSCLC

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Dalian Univ, Affiliated Zhongshan Hosp, Dept Radiol, Dalian 116001, Peoples R China [2]Capital Med Univ, Beijing Shijitan Hosp, Emergency & Crit Care Med Ctr, Dept Resp & Crit Care, Beijing 100038, Peoples R China [3]Shandong Second Med Univ, Affiliated Hosp, Dept Resp & Crit Care, Weifang, Peoples R China [4]Hubei Univ Med, Taihe Hosp, Dept Resp & Crit Care Med, Shiyan 442000, Peoples R China [5]Ordos Cent Hosp, Ordos 017000, Peoples R China [6]Capital Med Univ, Xuanwu Hosp, Dept Resp & Crit Care, Beijing 100038, Peoples R China
出处:
ISSN:

关键词: non-small cell lung cancer immunotherapy efficacy prediction CT PET MRI

摘要:
Immunotherapy has emerged as a transformative treatment for non-small cell lung cancer (NSCLC), yet its clinical benefits remain variable among patients. Early and accurate evaluation of treatment response is critical to guide therapeutic adjustments and improve outcomes. This review synthesizes recent advancements in multimodal imaging techniques-computed tomography (CT), positron emission tomography (PET)/CT, magnetic resonance imaging (MRI), and radiomics-for evaluating and predicting immunotherapy efficacy in NSCLC. We analyze the strengths and limitations of conventional morphological criteria (eg, RECIST, iRECIST) and highlight emerging quantitative biomarkers, including CT texture analysis, metabolic parameters (MTV, TLG), and diffusion-weighted MRI metrics. Notably, radiomics demonstrates promise in decoding tumor heterogeneity, PD-L1 expression, and immune microenvironment features, while immuno-PET probes targeting immune checkpoints offer novel insights into immune activity in vivo. Challenges such as pseudo-progression, nodal immune flare, and discrepancies between imaging responses and pathological responses are critically discussed. By integrating morphological, metabolic, and microenvironmental data, multimodal imaging enhances precision in patient stratification and therapeutic monitoring. Future research should prioritize multicenter, AI-driven radiomics validation and targeted tracer development to optimize NSCLC immunotherapy management. This review provides clinicians and researchers with new directions for utilizing multi-modal imaging techniques in developing personalized treatment strategies.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 4 区 医学
小类 | 4 区 肿瘤学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2023]版:
Q3 ONCOLOGY
最新[2024]版:
Q3 ONCOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Dalian Univ, Affiliated Zhongshan Hosp, Dept Radiol, Dalian 116001, Peoples R China
通讯作者:
通讯机构: [3]Shandong Second Med Univ, Affiliated Hosp, Dept Resp & Crit Care, Weifang, Peoples R China [6]Capital Med Univ, Xuanwu Hosp, Dept Resp & Crit Care, Beijing 100038, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17881 今日访问量:0 总访问量:958 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院