当前位置: 首页 > 详情页

Leveraging pathological markers of lower grade glioma to predict the occurrence of secondary epilepsy, a retrospective study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Xuanwu Hosp, Dept Neurosurg, Beijing, Peoples R China [2]Capital Med Univ, Xuanwu Hosp, Brain Res Innovat & Transformat Lab, Beijing, Peoples R China [3]Hebei Med Univ, Shijiazhuang, Hebei Province, Peoples R China [4]Capital Med Univ, Clin Res Ctr Epilepsy, Beijing, Peoples R China [5]Beijing Municipal Geriatr Med Res Ctr, Beijing, Peoples R China
出处:
ISSN:

关键词: Glioma Epilepsy Random forest model Machine learning

摘要:
Epilepsy is a common manifestation in patients with lower grade glioma (LGG), often presenting as the initial symptom in approximately 70% of cases. This study aimed to identify clinical and pathological markers for epileptic seizures in patients with LGG. Additionally, it sought to develop and validate a machine learning model that enables tailored risk-based anti-seizure treatment. Health records of patients with histologically confirmed LGG from 2019 to 2022 were retrospectively analyzed, incorporating patient demographics, tumor pathology, and epilepsy prevalence data. A random forest (RF) model (named SEEPPR) was constructed based on potential risk factors associated with epilepsy in LGG patients. Performance was evaluated using the area under the receiver operating characteristic (ROC) curve with the SEEPPR model, while the SHapley Additive exPlanation (SHAP) method was employed for elucidating the model's decision process. Additionally, the model has been integrated into a web application to enhance its clinical utility. This study identifies specific clinical and pathological markers as epileptic drivers. Our explainable RF model effectively predicts secondary epilepsy risk in LGG patients, potentially enabling early intervention to prevent epilepsy progression. This study underscores the significance of leveraging machine learning models to enhance epilepsy management in LGG patients.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
最新[2025]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2024]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Capital Med Univ, Xuanwu Hosp, Dept Neurosurg, Beijing, Peoples R China [2]Capital Med Univ, Xuanwu Hosp, Brain Res Innovat & Transformat Lab, Beijing, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Capital Med Univ, Xuanwu Hosp, Dept Neurosurg, Beijing, Peoples R China [2]Capital Med Univ, Xuanwu Hosp, Brain Res Innovat & Transformat Lab, Beijing, Peoples R China [4]Capital Med Univ, Clin Res Ctr Epilepsy, Beijing, Peoples R China [5]Beijing Municipal Geriatr Med Res Ctr, Beijing, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17881 今日访问量:1 总访问量:968 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院