当前位置: 首页 > 详情页

DDintensity: Addressing imbalanced drug-drug interaction risk levels using pre-trained deep learning model embeddings

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]City Univ Hong Kong, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China [2]Univ Oxford, Sir William Dunn Sch Pathol, Oxford, England [3]Harvard Med Sch, Massachusetts Gen Hosp, Cutaneous Biol Res Ctr, Boston, MA USA [4]MIT, Sci & Artificial Intelligence Lab, Cambridge, MA USA [5]Capital Med Univ, Xuanwu Hosp, Dept Neurosurg, Beijing, Peoples R China [6]Ningbo Univ, Coll Informat Sci & Engn, Ningbo, Peoples R China [7]City Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China [8]City Univ Hong Kong, Hong Kong Inst Data Sci, Kowloon, Hong Kong, Peoples R China
出处:
ISSN:

关键词: Imbalanced datasets Deep learning Embeddings Drug-drug interaction predictions

摘要:
Imbalanced datasets have been a persistent challenge in bioinformatics, particularly in the context of drug-drug interaction (DDI) risk level datasets. Such imbalance can lead to biased models that perform poorly on underrepresented classes. To address this issue, one strategy is to construct a balanced dataset, while another involves employing more advanced features and models. In this study, we introduce a novel approach called DDintensity, which leverages pre-trained deep learning models as embedding generators combined with LSTM-attention models to address the imbalance in DDI risk level datasets. We tested embeddings from various domains, including images, graphs, and textual corpus. Among these, embeddings generated by BioGPT achieved the highest performance, with an Area Under the Curve (AUC) of 0.97 and an Area Under the Precision-Recall curve (AUPR) of 0.92. Our model was trained on the DDinter and further validated using the MecDDI dataset. Additionally, case studies on chemotherapeutic drugs, DB00398 (Sorafenib) and DB01204 (Mitoxantrone) used in oncology, were conducted to demonstrate the specificity and effectiveness of the this methods. Our approach demonstrates high scalability across DDI modalities, as well as the discovery of novel interactions. In summary, we introduce DDIntensity as a solution for imbalanced datasets in bioinformatics with pre-trained deep-learning embeddings.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 医学
小类 | 2 区 计算机:人工智能 2 区 工程:生物医学 2 区 医学:信息
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 计算机:人工智能 2 区 工程:生物医学 2 区 医学:信息
JCR分区:
出版当年[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, BIOMEDICAL Q1 MEDICAL INFORMATICS
最新[2024]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, BIOMEDICAL Q1 MEDICAL INFORMATICS

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]City Univ Hong Kong, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China [2]Univ Oxford, Sir William Dunn Sch Pathol, Oxford, England
通讯作者:
通讯机构: [1]City Univ Hong Kong, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China [7]City Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China [8]City Univ Hong Kong, Hong Kong Inst Data Sci, Kowloon, Hong Kong, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17929 今日访问量:0 总访问量:968 更新日期:2025-08-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院