当前位置: 首页 > 详情页

Conductivity-driven electric field disparities at gray-white matter interfaces during transcranial magnetic stimulation in Alzheimer's disease

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Chinese Acad Sci, Inst Elect Engn, Beijing Key Lab Bioelectromagnetism, Beijing 100190, Peoples R China [2]Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China [3]Capital Med Univ, Dept Neurol, Xuanwu Hosp, Beijing 100053, Peoples R China
出处:
ISSN:

摘要:
Transcranial magnetic stimulation (TMS) has shown potential in enhancing cognitive function in patients with Alzheimer's disease (AD). While TMS modeling is crucial for optimizing therapy, uncertainties in tissue conductivity values require systematic investigation into how these parameters affect electric field (E-field) distribution between gray matter (GM) and white matter (WM). This study aims to determine how AD-related changes in GM and WM conductivity alter TMS-induced E-field distribution, particularly at GM-WM interfaces. Using MRI data from 35 AD patients and 35 healthy controls, we analyzed TMS induced intracerebral E-field distributions in four target sites (left dorsolateral prefrontal cortex, left angular gyrus, left primary motor cortex, and precuneus) and their GM-WM interfaces across varying conductivity configurations, with systematic 30 degrees coil rotations around each target. Under default conductivity settings, both healthy controls and AD patients exhibited stronger WM E-field (EWM) than GM E-field (EGM) across all four brain regions (P < 0.001), while coil orientation did not alter this pattern. Although this EWM dominance gradually diminished with increasing WM conductivity, the predominance of EWM persisted with conductivity values reported from the literature. Furthermore, AD patients exhibited significantly lower coefficients of variation (CV) than healthy controls in both EWM (P = 0.025) and EGM (P = 0.014). EWM consistently demonstrated greater CV values compared to EGM across both groups. This study identifies WM conductivity as a key determinant of E-field strength in AD. These insights advance the understanding of TMS mechanisms in AD and underscore the importance of refining conductivity parameters to optimize therapeutic targeting of GM-WM interactions. (c) 2025 Author(s).

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 4 区 综合性期刊
小类 | 4 区 综合性期刊
最新[2025]版:
大类 | 4 区 综合性期刊
小类 | 4 区 综合性期刊
JCR分区:
出版当年[2023]版:
Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Q4 NANOSCIENCE & NANOTECHNOLOGY Q4 PHYSICS, APPLIED
最新[2024]版:
Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Q4 NANOSCIENCE & NANOTECHNOLOGY Q4 PHYSICS, APPLIED

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Chinese Acad Sci, Inst Elect Engn, Beijing Key Lab Bioelectromagnetism, Beijing 100190, Peoples R China [2]Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
通讯作者:
通讯机构: [1]Chinese Acad Sci, Inst Elect Engn, Beijing Key Lab Bioelectromagnetism, Beijing 100190, Peoples R China [2]Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:18261 今日访问量:0 总访问量:1004 更新日期:2025-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院