当前位置: 首页 > 详情页

An arbitrary-modal fusion network for volumetric cranial nerves tract segmentation

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Zhejiang Univ Technol, Inst Adv Technol, Hangzhou, Peoples R China [2]Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Peoples R China [3]Nucl Ind 215 Hosp Shaanxi Prov, Dept Neurosurg, Xianyang, Peoples R China [4]Taihe Hosp, Wannan Med Coll, Dept Neurosurg, Taihe, Peoples R China [5]Capital Med Univ, Xuanwu Hosp, Dept Neurosurg, Beijing, Peoples R China
出处:
ISSN:

关键词: Cranial nerves tract segmentation Diffusion MRI Structural MRI Arbitrary-modal fusion

摘要:
The segmentation of cranial nerves (CNs) tract provides a valuable quantitative tool for the analysis of the morphology and trajectory of individual CNs. Multimodal CN segmentation networks, e.g., CNTSeg, which combine structural Magnetic Resonance Imaging (MRI) and diffusion MRI, have achieved promising segmentation performance. However, it is laborious or even infeasible to collect complete multimodal data in clinical practice due to limitations in equipment, user privacy, and working conditions. In this work, we propose a novel arbitrary-modal fusion network for volumetric CN segmentation, called CNTSeg-v2, which trains one model to handle different combinations of available modalities. Instead of directly combining all the modalities, we select T1-weighted (T1w) images as the primary modality due to its simplicity in data acquisition and contribution most to the results, which supervises the information selection of other auxiliary modalities. Our model encompasses an Arbitrary-Modal Collaboration Module (ACM) designed to effectively extract informative features from other auxiliary modalities, guided by the supervision of T1w images. Meanwhile, we construct a Deep Distance-guided Multi-stage (DDM) decoder to correct small errors and discontinuities through signed distance maps to improve segmentation accuracy. We evaluate our CNTSeg-v2 on the Human Connectome Project (HCP) dataset and the clinical Multi-shell Diffusion MRI (MDM) dataset. Extensive experimental results show that our CNTSeg-v2 achieves state-of-the-art segmentation performance, outperforming all competing methods.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 医学
小类 | 2 区 工程:生物医学 2 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 工程:生物医学 2 区 核医学
JCR分区:
出版当年[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2024]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Zhejiang Univ Technol, Inst Adv Technol, Hangzhou, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:18261 今日访问量:0 总访问量:1003 更新日期:2025-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院