当前位置: 首页 > 详情页

A Spatial and Global Correlation-Aware Network for Multiple Sclerosis Lesion Segmentation from Multi-Modal MR Images

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Northwestern Polytech Univ, Sch Software, Xian, Peoples R China [2]Univ Sydney, Sch Comp Sci, Darlington, NSW, Australia [3]Capital Med Univ, Xuanwu Hosp, Beijing, Peoples R China
出处:
ISSN:

关键词: biomedical imaging convolutional neural nets image segmentation

摘要:
Multiple sclerosis (MS) lesion segmentation from MR imaging is a prerequisite step in clinical diagnosis and treatment of brain diseases. However, automated segmentation of MS lesions remains a challenging task, owing to the variant morphology and uncertain distribution of lesions across subjects. Despite the achieved success by existing methods, two problems still persist in automated segmentation of MS lesions, namely the lack of an effective feature enhancement approach for capturing locality context and the lack of global coherence in prediction for pixels. Hence, we propose a correlation learning network for both local and global context in this work. Specifically, we propose a sparse spatial correlation module to learn the spatial correlations within neighbours for local context. Besides, we propose a global coherence module to encode long-range dependencies for global context. The proposed method is evaluated on a public ISBI2015 datatset and a private in-house dataset collected from hospital. Experimental results show the competitive performance of our method against state-of-the-art methods.

语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:人工智能 4 区 工程:电子与电气 4 区 成像科学与照相技术
最新[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:人工智能 4 区 工程:电子与电气 4 区 成像科学与照相技术
JCR分区:
出版当年[2023]版:
Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
最新[2024]版:
Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Northwestern Polytech Univ, Sch Software, Xian, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:18209 今日访问量:0 总访问量:997 更新日期:2025-10-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院