当前位置: 首页 > 详情页

On disturbance rejection control of the epileptiform spikes

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beijing Univ Posts & Telecommun, Dept Mech & Elect Engn, Beijing 100876, Peoples R China [2]Beijing Technol & Business Univ, Sch Comp & Informat Engn, Beijing 100048, Peoples R China [3]Capital Med Univ, Xuanwu Hosp, Beijing Inst Funct Neurosurg, Beijing 100053, Peoples R China
出处:
ISSN:

摘要:
Epilepsy is a neurological disorder resulting from a sudden development of synchronous firing in a massive group of neurons. For the particularity of the epilepsy, a neural mass model (NMM) is commonly utilized to understand and simulate the mechanism and evolution of the epilepsy. In this paper, based on a multi-coupling NMM and real EEGs of an epileptic mouse, a computational epileptic model is established to simulate the abnormal discharges of a mouse during seizures. Thus, rather than make animal experiments directly, numerical tests can be performed first. It reduces risks and helps improve the closed-loop neuromodulation. In addition, considering that no epileptic model can be utilized for neuromodulation in clinic, and even if a model exists, it still cannot describe the dynamics of the epilepsy faithfully, a scalable observer bandwidth and phase leading active disturbance rejection control (SOB-PLADRC) is proposed. Accordingly, a timelier and more accurate total disturbance estimation can be obtained by a scalable observer bandwidth and phase leading extended state observer, and an expected closed-loop neuromodulation can be realized without an accurate epileptic model. Numerical simulations based on the established model also show that the SOB-PLADRC suppresses seizures best among the PI and other active disturbance rejection approaches. More powerful disturbance rejection ability and more satisfactory closed-loop neuromodulation make the SOB-PLADRC more promising in the seizure control.

语种:
WOS:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 工程技术
小类 | 3 区 神经科学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 神经科学
JCR分区:
出版当年[2019]版:
Q2 NEUROSCIENCES
最新[2024]版:
Q2 NEUROSCIENCES

影响因子: 最新[2024版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Beijing Univ Posts & Telecommun, Dept Mech & Elect Engn, Beijing 100876, Peoples R China [2]Beijing Technol & Business Univ, Sch Comp & Informat Engn, Beijing 100048, Peoples R China [*1]Beijing Univ Posts & Telecommun, Dept Mech & Elect Engn, Beijing 100876, Peoples R China [*2]Beijing Technol & Business Univ, Sch Comp & Informat Engn, Beijing 100048, Peoples R China
通讯作者:
通讯机构: [1]Beijing Univ Posts & Telecommun, Dept Mech & Elect Engn, Beijing 100876, Peoples R China [*1]Beijing Univ Posts & Telecommun, Dept Mech & Elect Engn, Beijing 100876, Peoples R China [2]Beijing Technol & Business Univ, Sch Comp & Informat Engn, Beijing 100048, Peoples R China [*2]Beijing Technol & Business Univ, Sch Comp & Informat Engn, Beijing 100048, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:18261 今日访问量:0 总访问量:1004 更新日期:2025-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院