当前位置: 首页 > 详情页

Intermittent hypoxic conditioning restores neurological dysfunction of mice induced by long-term hypoxia

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China. [2]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
出处:
ISSN:

关键词: conditioning hypoxia inflammation neurogenesis neurological function

摘要:
Central nervous system diseases are associated with hypoxia, which usually cause irreversible nerve damage, but the underlying mechanism is unclear and effective intervention strategies are lacking. This study was designed to explore the mechanism and treatment strategy of hypoxia-induced nerve injury.In this study, 13% O2 was used to treat mice for 0, 1, 3 7, and 14 days, Morris water maze and other animal behavior experiments were used to evaluate the neurological function of mice. TUNEL, BrdU, PCNA, DCX, and SOX2 staining were used to observe the apoptosis and proliferation of mouse neurons. RT-PCR and Iba1 staining were used to evaluate the release of inflammatory factors IL-1β, IL-6, and TNF-α and the activation of microglia.Short-term hypoxia promotes neurogenesis, while long-term hypoxia inhibits neurogenesis. The changes in hypoxia-induced neurogenesis were positively correlated with neurological functions, but negatively correlated with apoptosis. Moreover, intermittent hypoxic conditioning restored long-term hypoxia-induced neurological dysfunction by promoting neural stem cell generation and inhibiting the release of inflammatory factors IL-1β, IL-6, and TNF-α and the activation of microglia.Hypoxia promoted neurogenesis in a time-dependent manner, and intermittent hypoxic conditioning exerted a neuroprotective effect through promoting neural stem cell generation and suppressing inflammation induced by long-term hypoxia stress, which provided a novel concept to develop a treatment for hypoxia-related brain injury.© 2022 The Authors. CNS Neuroscience & Therapeutics Published by John Wiley & Sons Ltd.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 医学
小类 | 1 区 药学 1 区 神经科学
最新[2023]版:
大类 | 1 区 医学
小类 | 2 区 神经科学 2 区 药学
JCR分区:
出版当年[2021]版:
Q1 NEUROSCIENCES Q1 PHARMACOLOGY & PHARMACY
最新[2023]版:
Q1 PHARMACOLOGY & PHARMACY Q1 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China. [2]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
通讯作者:
通讯机构: [1]Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China. [2]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China. [*1]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Changchun Street, No.45, Xicheng District, Beijing, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院