当前位置: 首页 > 详情页

The value of convolutional neural networks-based deep learning model in differential diagnosis of space-occupying brain diseases

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurology, School of Medicine, South China University of Technology, Guangzhou, China. [2]Department of Neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China. [3]School of Life Science, Beijing Institute of Technology, Beijing, China. [4]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China. [5]Department of Radiology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China.
出处:
ISSN:

关键词: convolutional neural network space-occupying brain lesions diagnosis differential magnetic resonance imaging tumefactive demyelinating lesions

摘要:
It is still a challenge to differentiate space-occupying brain lesions such as tumefactive demyelinating lesions (TDLs), tumefactive primary angiitis of the central nervous system (TPACNS), primary central nervous system lymphoma (PCNSL), and brain gliomas. Convolutional neural networks (CNNs) have been used to analyze complex medical data and have proven transformative for image-based applications. It can quickly acquire diseases' radiographic features and correct doctors' diagnostic bias to improve diagnostic efficiency and accuracy. The study aimed to assess the value of CNN-based deep learning model in the differential diagnosis of space-occupying brain diseases on MRI.We retrospectively analyzed clinical and MRI data from 480 patients with TDLs (n = 116), TPACNS (n = 64), PCNSL (n = 150), and brain gliomas (n = 150). The patients were randomly assigned to training (n = 240), testing (n = 73), calibration (n = 96), and validation (n = 71) groups. And a CNN-implemented deep learning model guided by clinical experts was developed to identify the contrast-enhanced T1-weighted sequence lesions of these four diseases. We utilized accuracy, sensitivity, specificity, and area under the curve (AUC) to evaluate the performance of the CNN model. The model's performance was then compared to the neuroradiologists' diagnosis.The CNN model had a total accuracy of 87% which was higher than senior neuroradiologists (74%), and the AUC of TDLs, PCNSL, TPACNS and gliomas were 0.92, 0.92, 0.89 and 0.88, respectively.The CNN model can accurately identify specific radiographic features of TDLs, TPACNS, PCNSL, and gliomas. It has the potential to be an effective auxiliary diagnostic tool in the clinic, assisting inexperienced clinicians in reducing diagnostic bias and improving diagnostic efficiency.Copyright © 2023 Miao, Shao, Wang, Wang, Han, Li, Li, Sun, Wen and Liu.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 医学
小类 | 3 区 神经科学 3 区 临床神经病学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 临床神经病学 3 区 神经科学
JCR分区:
出版当年[2021]版:
Q2 CLINICAL NEUROLOGY Q2 NEUROSCIENCES
最新[2023]版:
Q2 CLINICAL NEUROLOGY Q3 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Neurology, School of Medicine, South China University of Technology, Guangzhou, China. [2]Department of Neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China.
共同第一作者:
通讯作者:
通讯机构: [1]Department of Neurology, School of Medicine, South China University of Technology, Guangzhou, China. [2]Department of Neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院