当前位置: 首页 > 详情页

Development and validation of a random forest model to predict functional outcome in patients with intracerebral hemorrhage

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Xuanwu Hosp, Dept Neurol, 45 Changchun St, Beijing 100053, Peoples R China [2]Beijing Fengtai Youanmen Hosp, Dept Crit Care Med, Beijing 100063, Peoples R China [3]Jining Med Univ, Affiliated Hosp, Intens Care Unit, Jining 272029, Shandong, Peoples R China [4]Renhe Hosp, Dept Crit Care Med, Beijing 102600, Peoples R China
出处:
ISSN:

关键词: Random forest model Functional outcome Intracerebral hemorrhage Prediction

摘要:
ObjectiveTo develop and validate a machine learning (ML)-based model to predict functional outcome in Chinese patients with intracerebral hemorrhage (ICH).MethodsThis retrospective cohort study enrolled patients with ICH between November 2017 and November 2020. The follow-up period ended in February 2021. The study population was divided into training and testing sets with a ratio of 7:3. All variables were included in the least absolute shrinkage and selection operator (LASSO) regression for feature selection. The selected variables were incorporated into the random forest algorithm to construct the prediction model. The predictive performance of the model was evaluated via the area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and calibration curve.ResultsA total of 412 ICH patients were included, with 288 in the training set, and 124 in the testing set. Twelve attributes were selected: neurological deterioration, Glasgow Coma Scale (GCS) score at 24 h, baseline GCS score, time from onset to the emergency room, blood glucose, diastolic blood pressure (DBP) change in 24 h, hematoma volume change in 24 h, systemic immune-inflammatory index (SII), systolic blood pressure (SBP) change in 24 h, serum creatinine, serum sodium, and age. In the testing set, the accuracy, AUC, sensitivity, specificity, PPV, and NPV of the model were 0.895, 0.964, 0.872, 0.906, 0.810, and 0.939, respectively. The calibration curves showed a good calibration capability of the model.ConclusionThis developed random forest model performed well in predicting 3-month poor functional outcome for Chinese ICH patients.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 4 区 医学
小类 | 4 区 临床神经病学 4 区 神经科学
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 临床神经病学 4 区 神经科学
JCR分区:
出版当年[2021]版:
Q2 CLINICAL NEUROLOGY Q2 NEUROSCIENCES
最新[2023]版:
Q2 CLINICAL NEUROLOGY Q3 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Capital Med Univ, Xuanwu Hosp, Dept Neurol, 45 Changchun St, Beijing 100053, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院