当前位置: 首页 > 详情页

Episode-level prediction of freezing of gait based on wearable inertial signals using a deep neural network model

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China [2]Beijing Univ Tradit Chinese Med, Dongzhimen Hosp, Beijing 100029, Peoples R China [3]Capital Med Univ, Beijing Inst Geriatr, Xuanwu Hosp, Dept Neurol Neurobiol & Geriatr, Beijing 100053, Peoples R China [4]Xuzhou Med Univ, Dept Neurol, Affiliated Hosp, Xuzhou 221006, Jiangsu, Peoples R China [5]Beijing Univ Technol, Gengdan Inst, Beijing, Peoples R China
出处:
ISSN:

关键词: Freezing of gait Parkinson's disease FoG prediction FoG-Net Self-attention

摘要:
Freezing of gait (FoG) is a common gait disorder in patients with the Parkinson's disease (PD), resulting in mobility limitation, risk of falls and decrease of daily life quality. Wearable sensors offer promising means of predicting FoG in living conditions and provide a critical time window for exogenous intervention. However, existing FoG prediction methods, suffering from complex hand-crafted feature design, low prediction rates, and high false positive rates, are far from ideal. In this study, FoG prediction with wearable inertial sensors is studied. A novel neural network model, named FoG-Net, is proposed to improve FoG prediction, avoiding complicated hand-crafted feature extraction. The FoG-Net consists of a backbone network and a feature fusion network, where the backbone network extracts shallow temporal features, and the feature fusion network automatically learns intra-token information using a self-attention mechanism. In order to comprehensive evaluate the performance of FoG prediction, a set of more practical metrics are designed, considering both prediction accuracy and risk of false alarm. Based on the new metrics, the FoG-Net achieves a competitive performance of 96.97% prediction rate and 22.73% false alarm rate on real FoG data, which provides a new potential for PD patients' fall prevention in daily life.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
最新[2023]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2022]版:
Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院