当前位置: 首页 > 详情页

Long-term observation of polycaprolactone small-diameter vascular grafts with thickened outer layer and heparinized inner layer in rabbit carotid arteries

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China [2]Beijing Key Laboratory of Pre-clinic Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital National Cardiovascular Center, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China [3]Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
出处:
ISSN:

关键词: heparinized polycaprolactone small-diameter vascular grafts electrospinning rabbit carotid artery interposition aneurysm formation

摘要:
In our previous study, the pristine bilayer small-diameter in situ tissue engineered vascular grafts (pTEVGs) were electrospun from a heparinized polycaprolactone (PCL45k) as an inner layer and a non-heparinized PCL80k as an outer layer in the thickness of about 131 μm and 202 μm, respectively. However, the hydrophilic enhancement of inner layer stemmed from the heparinization accelerated the degradation of grafts leading to the early formation of arterial aneury-sms in a period of 3 months, severely hindering the perennial observation of the neo-tissue regene-ration, host cell infiltration and graft remodeling in those implanted pTEVGs. Herein to address this drawback, the thickness of the outer layers was increased with PCL80k to around 268 μm, while the inner layer remained unchangeable. The thickened TEVGs named as tTEVGs were evaluated in six rabbits via a carotid artery interpositional model for a period of 9 months. All the animals kept alive and the grafts remained patent until explantation except for one whose one side of arterial blood vessels was occluded after an aneurysm occurred at 6 months. Although a significant degradation was observed in the implanted grafts at 9 month, the occurrence of aneurysms was obviously delayed compared to pTEVGs. The tissue stainings indicated that the endothelial cell remodeling was substantially completed by 3 months, while the regeneration of elastin and collagen remained smaller and unevenly distributed in comparison to autologous vessels. Additionally, the proliferation of macrophages and smooth muscle cells reached the maximum by 3 months. These tTEVGs possessing a heparinized inner layer and a thickened outer layer exhibited good patency and significantly delayed onset time of aneurysms.© 2024 IOP Publishing Ltd.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 4 区 工程:生物医学 4 区 材料科学:生物材料
最新[2023]版:
大类 | 3 区 医学
小类 | 4 区 工程:生物医学 4 区 材料科学:生物材料
JCR分区:
出版当年[2022]版:
Q2 ENGINEERING, BIOMEDICAL Q3 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q2 ENGINEERING, BIOMEDICAL Q3 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院