当前位置: 首页 > 详情页

Delivering synaptic protein mRNAs via extracellular vesicles ameliorates cognitive impairment in a mouse model of Alzheimer's disease

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St., Beijing 100053, China. [2]Center of Alzheimer’s Disease, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
出处:
ISSN:

关键词: Alzheimer’s disease Synaptic dysfunction Growth-associated protein 43 Synaptosome-associated protein 25 Extracellular vesicles Messenger RNAs

摘要:
Synaptic dysfunction with reduced synaptic protein levels is a core feature of Alzheimer's disease (AD). Synaptic proteins play a central role in memory processing, learning, and AD pathogenesis. Evidence suggests that synaptic proteins in plasma neuronal-derived extracellular vesicles (EVs) are reduced in patients with AD. However, it remains unclear whether levels of synaptic proteins in EVs are associated with hippocampal atrophy of AD and whether upregulating the expression of these synaptic proteins has a beneficial effect on AD.In this study, we included 57 patients with AD and 56 healthy controls. We evaluated their brain atrophy through magnetic resonance imaging using the medial temporal lobe atrophy score. We measured the levels of four synaptic proteins, including synaptosome-associated protein 25 (SNAP25), growth-associated protein 43 (GAP43), neurogranin, and synaptotagmin 1 in both plasma neuronal-derived EVs and cerebrospinal fluid (CSF). We further examined the association of synaptic protein levels with brain atrophy. We also evaluated the levels of these synaptic proteins in the brains of 5×FAD mice. Then, we loaded rabies virus glycoprotein-engineered EVs with messenger RNAs (mRNAs) encoding GAP43 and SNAP25 and administered these EVs to 5×FAD mice. After treatment, synaptic proteins, dendritic density, and cognitive function were evaluated.The results showed that GAP43, SNAP25, neurogranin, and synaptotagmin 1 were decreased in neuronal-derived EVs but increased in CSF in patients with AD, and the changes corresponded to the severity of brain atrophy. GAP43 and SNAP25 were decreased in the brains of 5×FAD mice. The engineered EVs efficiently and stably delivered these synaptic proteins to the brain, where synaptic protein levels were markedly upregulated. Upregulation of synaptic protein expression could ameliorate cognitive impairment in AD by promoting dendritic density. This marks the first successful delivery of synaptic protein mRNAs via EVs in AD mice, yielding remarkable therapeutic effects.Synaptic proteins are closely related to AD processes. Delivery of synaptic protein mRNAs via EVs stands as a promising effective precision treatment strategy for AD, which significantly advances the current understanding of therapeutic approaches for the disease.© 2024. The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 医学
小类 | 1 区 医学:内科
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 医学:内科
JCR分区:
出版当年[2022]版:
Q1 MEDICINE, GENERAL & INTERNAL
最新[2023]版:
Q1 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St., Beijing 100053, China. [2]Center of Alzheimer’s Disease, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
共同第一作者:
通讯作者:
通讯机构: [1]Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St., Beijing 100053, China. [2]Center of Alzheimer’s Disease, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16996 今日访问量:0 总访问量:905 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院